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CNRS / Observatoire de Paris, France

in collaboration with
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Motivations and history

The numerical library Lorene (for Langage Objet
pour la RElativité NumériquE) was initiated in 1997
by Jean-Alain Marck who, after realizing that the
FORTRAN programming language the group has been
using until then, was no longer adapted to the
growing complexity of the numerical relativity codes.

Lorene is of course :

a modular library written in C++,
a collaborative effort (over 20 contributors),
many users across the world,
many published results in numerical relativity ...

thanks to :

the cvs repository,
fully-documented sources available on the web page
http ://www.lorene.obspm.fr,
a great effort to achieve portability across various systems /
compilers.

http://www.lorene.obspm.fr
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Common features for many classes

Most of classes (object types) in Lorene share some common
functionalities :

protected data, with readonly accessors often called .get XXX
and read/write accessors .set XXX,

an overload of the “<<” operator to display objects,

a method for saving data into files and a constructor from a file,

for container-like objects (arrays, fields...) a state (etat in
French) flag indicating whether memory has been allocated :

ETATQCQ : ordinary state, memory allocated ⇒set etat qcq() ;
ETATZERO : null state, memory not allocated
⇒set etat zero() ;
ETATNONDEF : undefined state, memory not allocated
⇒set etat nondef() ;
+ a method annule hard() to fill with 0s ;

external arithmetic operators (+, -, *, /) and mathematical
functions (sin, exp, sqrt, abs, max, ...).
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3D spherical polar coordinates

In almost all cases, fields are
represented using 3D spherical
coordinates r, θ, ϕ and a
spherical-like grid :

stars and black holes have
spherical shapes,

astrophysical systems are
isolated : boundary
conditions are defined for
r →∞
although spherical
coordinates are singular
(origin, z-axis), surfaces r =
constant are smooth.

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ,
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Regularity at the origin

Let f(x, y, z) be an analytic function, it can be expanded near the
origin in terms of Taylor series :

f(x, y, z) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

cijkxiyjzk.

Changing the coordinates to spherical ones and after some amount
of calculations and recasting cos ϕ and sin ϕ in eiϕ :

f(r, θ, ϕ) =
∞∑

`=0

∑̀
m=−`

r`
∞∑
i=0

ai`mr2iY m
` (θ, ϕ).

Here Y`(θ, ϕ) = Pm
` (cos(θ)) eimϕ are the spherical harmonics with

Pm
` (cos(θ)) being an associated Legendre polynomial in cos θ.
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Spectral bases

f(r, θ, ϕ)

↙ ↘
` even

Radial base θ base ϕ base

Even Chebyshev Even Fourier Fourier

Even Chebyshev Even Legendre Fourier

` odd
Radial base θ base ϕ base

Odd Chebyshev Odd Fourier Fourier

Odd Chebyshev Odd Legendre Fourier

Fourier series in θ ⇒computation of derivatives or 1/ sin θ
operators ;

associated Legendre polynomial in cos θ ⇒spherical harmonics
⇒computation of the angular Laplace operator

∆θϕ ≡
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

and inversion of the Laplace or d’Alembert operators.
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Additional symmetries can be taken into account :

the θ-symmetry : symmetry with respect to the equatorial plane
(z = 0) ;

the ϕ-symmetry : invariance under the (x, y) 7→ (−x,−y)
transform.

When required, only the angular functions which satisfy these
symmetries are used for the decomposition and the grid is reduced in
size.
The regularity condition on the z-axis is automatically taken into
account by the spherical harmonics basis.
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Spectral representation in Lorene
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Mg3d

Multi-domain grid of collocation points on
which the functions are evaluated to compute
the spectral coefficients. It takes into account
symmetries.

In each domain, the radial variable used is ξ ∈ [−1, 1], or ∈ [0, 1] for
the nucleus.
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Multigrid arrays

The class Mtbl stores values of a function
on grid points ; it depends on a
multi-domain grid of type Mg3d and is
merely a collection of 3D arrays Tbl.

The class Mtbl cf stores spectral
coefficients of a function ; it has two more
elements than the corresponding Mtbl in
the ϕ-direction.
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Base val and Valeur

The class Base val contains information
about the spectral bases used in each
domain to transform from the function
values on the grid points (Mtbl) to the
spectral coefficients (Mtbl cf).

The class Valeur gathers a Mtbl, a
Mtbl cf and the Base val to pass from
one to the other.

An object of type Valeur can be initialized through its Mtbl
(physical space) ; the coefficients can then be computed using the
method coef() or ylm() for Fourier or spherical harmonics angular
bases. The inverse methods are coef i() and ylm i().
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Mappings
Class Map af

A mapping relates, in each domain, the
numerical grid coordinates (ξ, θ′, ϕ′) to the
physical ones (r, θ, ϕ).

The simplest class is Map af for which the relation between ξ and r
is linear (nucleus + shells) or inverse (CED).
To a mapping are attached coordinate fields Coord :
r, θ, ϕ, x, y, z, cos θ, · · · ; vector orthogonal triads and flat metrics.
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Scalar fields
Class Scalar

The class Scalar gathers a Valeur and a
mapping, it represents a scalar field defined on
the spectral grid, or a component of a
vector/tensor.

A way to construct a Scalar is to

1 use the standard constructor, which needs a mapping ; the
associated Valeur being then constructed in an undefined state
(ETATNONDEF ;

2 assign it an expression using Coords : e.g. x*y + exp(z).
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Important methods of the class Scalar

Accessors and modifier of the Valeur

get spectral va() readonly

set spectral va() read/write ; it can be used to compute
spectral coefficients, or to access directly to the coefficients
(Mtbl cf).

Spectral base manipulation

std spectral base() sets the standard spectral base for a
scalar field ;

std spectral base odd() sets the spectral base for the radial
derivative of a scalar field ;

get spectral base() returns the Base val of the considered
Scalar ;

set spectral base(Base val) sets a given Base val as the
spectral base.
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Important methods of the class Scalar

Accessors and modifier of values in a given domain

domain(int) reading ;

set domain(int) modifying ; it can be used to change the
values in the physical space in one domain only.

Accessors and modifier of values of a grid point

val grid point(int, int, int, int) readonly in the
physical space ;

set grid point(int, int, int, int) read/write in the
physical space, but should be used with caution, read carefully
the documentation.
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The dzpuis flag

In the compactified external domain (CED), the variable u = 1/r is
used (up to a factor α). ⇒when computing the radial derivative (i.e.
using the method dsdr()) of a field f , one gets

∂f

∂u
= −r2 ∂f

∂r
.

For the inversion Laplace operator, since

∆r = u4∆u,

it is interesting to have the source multiplied by r4 in the CED.
⇒use of an integer flag dzpuis for a scalar field f , which means that
in the CED, one does not have f , but

rdzpuisf

stored.
For instance, if f is constant equal to one in the CED, but with a

dzpuis set to 4, it means that f = 1/r4 in the CED.
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Regular operators and finite part

An operator like 1/r2 is singular, in general, at the origin.
Nevertheless, when it appears within e.g. the Laplace operator

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆θϕ

it should give regular results, when applied to a regular field.
⇒parity + r` behavior near the origin ensure that everything is well
behaved...in theory !
In practice, numerical errors can make things diverge if the division
by r is performed in the physical space.
⇒these kind of operators are evaluated in the coefficient space,
resulting in

1

r
↔ f(r)− f(0)

r
.
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Operator matrices

All radial operators can be seen, in a given domain, as a matrix
multiplication on the vector of Chebyshev coefficients.
The class Diff and its derived classes can give directly this matrix :

there is a different type for each operator

for example, the second derivative is Diff dsdx2

standard constructors for all these classes need the number of
coefficients and the type of spectral base :

Diff dsdx2 op(17, R CHEBP) ;
const Matrice mat op = op.get matrice() ;

Note that this gives the operator with respect to the ξ coordinate...
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Vector fields

Lorene can handle a vector field V (class Vector) expressed in
either of two types of components (i.e. using two orthonormal triads,
of type Base vect) :

the spherical triad (Vr, Vθ, Vϕ) get bvect spher(),

the Cartesian triad (Vx, Vy, Vz) get bvect cart().

Note that the choice of triad is independent from that of
coordinates : one can use Vy(r, θ, ϕ).

The Cartesian components of a regular vector field in spherical
coordinates follow the same rules that a regular scalar field,
except for symmetries ;

The spherical components have more complicated rules since the
spherical triad is singular (additional singularity).

⇒two ways of defining a regular vector field in spherical
components :

define it in Cartesian components and then rotate it (method
change triad(Base vect)), or

define it as a gradient of a regular scalar field.
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