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In problems involving one (or more Black Holes
(B.H.) when the excision technique is used, we
can have to handle degenerate elliptical opera-
tors.
An example, is the equation for the shift βi

when the lapse N vanishes on the horizon. In
fact the equation for the shift reads (in an apropi-
ate gauge)

∇jKij = 0 (1)

where K ij is the extrinsic curvature tensor

Kij =
1

2N
(∇iβj +∇jβi − ∂0γij) (2)
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Here in after we shall express all the differential
operators in terms of the flat covariant deriva-
tive Di computed with respect the flat metric
fik that in spherical coordinates reads 1

f11 = 1, f22 = r2, f33 = r2 sin2 θ (3)

Under the hypothesis that the topology of the
horizon is the topology of the sphere the equa-
tion of the horizon can be reduced to be

r = 1 (4)

Consequently we have to solve the the Einstein
equations in the excised space

1 ≤ r ≤ ∞ (5)

The technique used to solve the Einstein equa-
tions is to solve these equations in two domains

1 ≤ r ≤ 2, 2 ≤ r ≤ ∞ (6)

and to match the solutions and they first deriva-
tives at r = 2
The shift equation(1) can be written

1See the paper by S.Bonazzola et al. Phys.Rev.D 70 (2004), 104007
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DjDjβi+
1

3
Di(Djβj)−(Diβj+Djβi−2

3
Dlβ

lf ij+Si
1)

∂jN

N
= Si

2

With the B.C. βi = 0 |r=∞. In order to match
the solution and its derivative we must have at
list one homogeneous solution in the domain
1 ≤ r ≤ 2. Question : How many homoge-
neous solutions exist ?
Taking into account that near the horizon

N = (r − 1)N0(r, θ, φ)

we look for the homogeneous solutions of the
equation

DjDjβi−1

3
DiDjβ

i−1

x
(Drβi+Diβr−2

3
Dlβ

lf ir) = 0

where
x = r − 1

The vectorial operator of the above equation, in
spherical coordinates and spherical components
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is quite messy. By introducing two angular po-
tentials η and µ defined by the equations

βθ = ∂θη −
1

sin θ
∂φµ, βφ = ∂θµ +

1

sin θ
∂φη

we have two coupled Poisson equations for βr

and η and a Poisson equation for µ that after
an expansion in spherical harmonics reads:

d2µ

dr2
+

2

r

dµ

dr
−l(l + 1)

r2
µ−1

x
(
dµ

dr
−µ

r
) = 0, (x = r−1)

A solution µ1 can be found by making a power
expansion

µ1 = x2 − 5

3
x3 + ...

For l = 1 it exists an other homogeneous solu-
tion:

µ2 = r

that means that a black hole can rigidly rotate.
In fact, the non vanishing at r = 1 hmogenous
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solutions are

µ1 = r cos θ, µ2 = r sin θ cos φ, µ3 = r sin θ sin φ
(7)

from wich the corresponding solutions for β

βr = 0, βθ = 0, βφ = r sin θ

βr = 0, βθ = r sin φ, βφ = r cos θ cos φ

βr = 0, βθ = −r cos φ, βφ = r cos θ sin φ

A similar analysis can be performed for the poloy-
dal part βr, η of th shift. The conclusions are:

For l = 1, two couples of homogeneous solu-
tions exist. That means that a rigid translation
of the horizon can be chosen.

For l 6= 1 only βr can be given on the hori-
zon: The horizon can breath.

Finally singular equations exist for the metric
coefficients hik. For some coefficient (hrr) a
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boundary condition on the horizon can be given,
for other coefficients (hθθ) not.
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Equation 4G + 1
r−1(k1

d
dr + k2

r )G = 0

Consider the equation

d2G

dr2
+k0

1

r

dG

dr
+

1

r2
(−l(l+1)+kl)G+

1

r − 1
(k1

d

dr
+

k2

r
)G = 0

(8)

For k1 = k2 = 0 the above equation has two
regular solution regular a t r = 0 and at r = ∞
,kl if kl = ((k0 − 1)2 − 1)/4.

g1 = rj, j1 =
1− k0 − (2l + 1)

2
, j2 =

1− k0 + (2l + 1)

2

Note that the two solutions rj1 and rj2 are inte-
ger numbers if k0 is integer to. In this section,
we study the number and the aanalytical prop-
erties of the solution for different values of the
parameter k0, k1, k2.

Case k1 6= 0 and k1 6=| 1 |

Without losses of generality we consider only
the case k2 = 0. In fact by putting Ḡ = Grk2/k1
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the equation for the new function Ḡ will be
transformed in an equation having k2 = 0
The case | k1 |= 1 was already discussed.

The technique used consists in studying the be-
havior of the solution around the singular point
r = 1. For that we introduce the new variable
x = r − 1. The Eq. 8 writes

d2G

dx2
+k0

dG

dx
+(−l(l+1)+kl)G+

1

x
k1

d

dx
G = 0

(9)
We look for an homogeneous solution H1(x) by
making a series expansion

H1(x) = a0 + a2x
2 + a3x

3 + ...

. The coefficients a0 and a2 must satisfy the
relation

2(1 + k1)a2 + (−l(l + 1) + kl)a0 = 0 (10)

we see that k1 = −1 Tthe pathological case
a0 = 0 and the nonvanishing homogeneous so-
lution does not exist.

8



A second homogeneous solution H2(x) can be
found by searching a solution that vanishes at
x = 0, (r = 1). We put H2(x) = xj we obtain

j(j − 1) + jk1 = 0

from which
j = −k1 + 1 (11)

Therefore H2(x) will be

H2(x) = xj(1 + aj+1x + ...) (12)

where j is given by the Eq.(11) we see that if
k1 < 1 then the solution is regular, moreover if
k1 is integer number k1 ≤ −2 the solution has
a polynomial behavior near the singularity.
Conclusions: If k1 < 2 Then it exist two inde-
pendent homogeneous solutions of the equation
Eq.8

Numerical solution of the homogeneous equa-
tions
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If a non vanishing solution exists we shall pro-
ceed in the following way take a solution of the
first order differential equation appearing in the
singular term of the Eq.(8):

g0 = r
−k2
k1 (13)

This solution, in general is not a solution of the
the second order equation (8) Introduce g0 in
the Eq.(8) and compute the rest R. Solve the
non homogeneous equation

d2G

dr2
+

k0

r

dG

dr
+

1

r2
(kl−l(l+1))G+

1

x
(k1

d

dr
+

k2

r
)G = −R

(14)

with the Galerkin approximation by using a new
set of function Φn vanishing as x2. We can use
the set of (non orthogonal functions)

Φn = (r − 1)2Tn(r) (15)

Let be gp this particular solution, The homoge-
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neous H1 solution of the EQ.(8) will be

H1 = gp + g0 (16)

Numerical implementation

In this section I will show how to find numeri-
cally the homogeneouwe see that if k1 < 1 then
the solution is regular, moreover if k1 is integer
number k1 ≤ −2 the solution has a polynomial
behavior near the singularity.
Conclusions: If k1 < 2 Then it exist two inde-
pendent homogeneous solutions of the equation
Eq.8
Numerical solution of the homogeneous equa-
tions

If a non vanishing solution exists we shall pro-
ceed in the following way take a solution of the
first order differential equation appearing in the
singular term of the Eq.(8):

g0 = r
−k2
k1 (17)
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This solution, in general is not a solution of the
the second order equation (8) Introduce g0 in
the Eq.(8) and compute the rest R. Solve the
non homogeneous equation

d2G

dr2
+

k0

r

dG

dr
+

1

r2
(kl−l(l+1))G+

1

x
(k1

d

dr
+

k2

r
)G = −R

(18)

with the Galerkin approximation by using a new
set of function Φn vanishing as x2. We can use
the set of (non orthogonal functions)

Φn = (r − 1)2Tn(r) (19)

Let be gp this particular solution, The homoge-
neous H1 solution of the EQ.(refeqg) will be

H1 = gp + g0 (20)

Numerical implementation

In this section I will show how to find numeri-
cally the hogeneos solutions. We shall consider
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the solution H2 that vanishes at r = 1

Let be Oj
i the matrix of the operator of the

equation Eq.(9)

O = r2 d2

dr2
+r

d

dr
+kl− l(l+1)+

r

x
(rk1

d

dr
+k2)

(21)
with respect the Galerkin basis

Φn(r) = (r − 1)2Tn(r)

Finding H2 it means to find the coefficients an

of the expansion

H2(r) =
∑

anΦn(r)

Consequently we have to find a non trivial so-
lution of the algebraic system of equations

Oj
i aj = 0 (22)

A such a solution exists because the determi-
nant of the matrix Oj

i vanishes. We shall re-
place the last line of the system (22) by

Oj
N = 1, 0, 0, ...
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and we impose that the first coefficient a1=1
the system will look as

O1
1 a1 +O2

1 a2 +O3
1 a3 + .... = 0

O1
2 a1 +O2

2 a2 +O3
2 a3 + .... = 0

..................................... = 0

a1 + 0 + 0 + 0 + 0 + 0 + ..... = 1

Solution of the inhomogeneos equations
(The pathological case)

We shall consider the solution of the thoroidal
component of the shift:

r2d
2µ

dr2
+2r

dµ

dr
−l(l+1)µ+

r2

x
(−dµ

dr
+

µ

r
+S1) = r2S2

(23)
(x = r − 1) The case k1 = −1 is pathological,
because it exists a non vanishing homogeneous
soluttion at r = 1 only for l = 1. In order to
handle the singular term S1/x we define a new
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function
S̃1 = S1(r)− q

where q = S1(1). Thus function vanishes at
r = 1 an we re=writw the above equation as

r2d
2µ

dr2
+2r

dµ

dr
−l(l+1)µ+

r2

x
(−dµ

dr
+

µ

r
+q) = r2(S2+

S̃1

x
)

(24)
We look for a solution µ̃ such thta

µ̃ = −qx + F (r)

where Fr vanishes as x2 at r = 1. By replacing
µ̃ we have

r2d
2F

dr2
+2r

dF

dr
−l(l+1)F +

r2

x
(−dF

dr
+

F

r
) (25)

= r2[S2 +
S̃1

x
− q(3r − l(l + 1)x] (26)

and the solution is obtained by expanding F on
the Galerkin base as was done beore.

and the solution is obtained by expanding F
on the Galerkin base as was done before. 2

2Note that if a regular solution is required, the source must vanishes atr = 1
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Finding Kerr solution startinf from nothing

We show how construct an apprxomitatd Kerr
solution as an application of the above formal-
ism.

Start frm the flat metric fik.
First step:
Find a solution of the lapse equation

4N = 0

with the B,C. N(1) = 0, N(∞) = 1 This solu-
tion can be

N(r) = 1− 1

r
Second step:
Find a solution of the linearised eequation for
Ψ4

4Ψ4 = 0

where Ψ is the conformal factor. The solution

16



must satisfy the B.C. of an apparent horizon

dΨ4

dr
= −1 |r=1, Ψ4 = 1 |r=∞

This solution is

Ψ4 =
1

r

3th step: Find (numerically) a solution for µl

with the B.C.

µl = δ1
l µ0 |r=1, µl = 0 |r=∞

where δi
l is the Kronler δ Iterate

Note that th source of µ vanishes at r = 1 at
each iterartion. (See footnote)

Fig. 1) shows the lapse N. Fig.2) shows the
fonction N0 = N/x (in the first domain) Fig.
3) the shift (for different values of θ
The other figures show the convergence of the
iteration.

Conclusion
We have studied the analytical properties of the
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solutions of singular elliptical P.D.E. Spectral
methods allows to us to compute numerical so-
lutions of singular equations.
As examplese computed the Kerr solution within
the conformally flat approximation. The algo-
rithm has shown to be robust (in the sense that
it converges exponentially without a relaxation
parameter).
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Fig. 1

Fig. 2
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Fig. 3

Fig. 4
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Fig. 5

Fig. 6
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