Singular elliptical operators

................................ by

-S. BONAZZOLA
L.U.T.H Oservatoire Paris Meudon

In problems involving one (or more Black Holes (B.H.) when the excision technique is used, we can have to handle degenerate elliptical operators.
An example, is the equation for the shift β^{i} when the lapse N vanishes on the horizon. In fact the equation for the shift reads (in an apropiate gauge)

$$
\begin{equation*}
\nabla^{j} K_{i j}=0 \tag{1}
\end{equation*}
$$

where $K^{i j}$ is the extrinsic curvature tensor

$$
\begin{equation*}
K_{i j}=\frac{1}{2 N}\left(\nabla_{i} \beta_{j}+\nabla_{j} \beta_{i}-\partial_{0} \gamma_{i j}\right) \tag{2}
\end{equation*}
$$

Here in after we shall express all the differential operators in terms of the flat covariant derivative \mathcal{D}_{i} computed with respect the flat metric $f_{i k}$ that in spherical coordinates reads ${ }^{1}$

$$
\begin{equation*}
f_{11}=1, \quad f_{22}=r^{2}, \quad f_{33}=r^{2} \sin ^{2} \theta \tag{3}
\end{equation*}
$$

Under the hypothesis that the topology of the horizon is the topology of the sphere the equation of the horizon can be reduced to be

$$
\begin{equation*}
r=1 \tag{4}
\end{equation*}
$$

Consequently we have to solve the the Einstein equations in the excised space

$$
\begin{equation*}
1 \leq r \leq \infty \tag{5}
\end{equation*}
$$

The technique used to solve the Einstein equations is to solve these equations in two domains

$$
\begin{equation*}
1 \leq r \leq 2, \quad 2 \leq r \leq \infty \tag{6}
\end{equation*}
$$

and to match the solutions and they first derivatives at $r=2$
The shift equation(1) can be written

[^0]$\mathcal{D}_{j} \mathcal{D}^{j} \beta^{i}+\frac{1}{3} \mathcal{D}^{i}\left(\mathcal{D}^{j} \beta^{j}\right)-\left(\mathcal{D}^{i} \beta^{j}+\mathcal{D}^{j} \beta^{i}-\frac{2}{3} \mathcal{D}_{l} \beta^{l} f^{i j}+S_{1}^{i}\right) \frac{\partial_{j} N}{N}=S_{2}^{i}$

With the B.C. $\beta^{i}=\left.0\right|_{r=\infty}$. In order to match the solution and its derivative we must have at list one homogeneous solution in the domain $1 \leq r \leq 2$. Question : How many homogeneous solutions exist?
Taking into account that near the horizon

$$
N=(r-1) N_{0}(r, \theta, \phi)
$$

we look for the homogeneous solutions of the equation
$\mathcal{D}_{j} \mathcal{D}^{j} \beta^{i}-\frac{1}{3} \mathcal{D}^{i} \mathcal{D}_{j} \beta^{i}-\frac{1}{x}\left(\mathcal{D}^{r} \beta^{i}+\mathcal{D}^{i} \beta^{r}-\frac{2}{3} \mathcal{D}_{l} \beta^{l} f^{i r}\right)=0$ where

$$
x=r-1
$$

The vectorial operator of the above equation, in spherical coordinates and spherical components
is quite messy. By introducing two angular potentials η and μ defined by the equations

$$
\beta^{\theta}=\partial_{\theta} \eta-\frac{1}{\sin \theta} \partial_{\phi} \mu, \quad \beta^{\phi}=\partial_{\theta} \mu+\frac{1}{\sin \theta} \partial_{\phi} \eta
$$

we have two coupled Poisson equations for β^{r} and η and a Poisson equation for μ that after an expansion in spherical harmonics reads:
$\frac{d^{2} \mu}{d r^{2}}+\frac{2}{r} \frac{d \mu}{d r}-\frac{l(l+1)}{r^{2}} \mu-\frac{1}{x}\left(\frac{d \mu}{d r}-\frac{\mu}{r}\right)=0, \quad(x=r-1)$
A solution μ_{1} can be found by making a power expansion

$$
\mu_{1}=x^{2}-\frac{5}{3} x^{3}+\ldots
$$

For $l=1$ it exists an other homogeneous solution:

$$
\mu_{2}=r
$$

that means that a black hole can rigidly rotate.
In fact, the non vanishing at $r=1$ hmogenous
solutions are
$\mu_{1}=r \cos \theta, \quad \mu_{2}=r \sin \theta \cos \phi, \quad \mu_{3}=r \sin \theta \sin \phi$
from wich the corresponding solutions for β

$$
\begin{gathered}
\beta_{r}=0, \quad \beta_{\theta}=0, \quad \beta_{\phi}=r \sin \theta \\
\beta_{r}=0, \quad \beta_{\theta}=r \sin \phi, \quad \beta_{\phi}=r \cos \theta \cos \phi \\
\beta_{r}=0, \quad \beta_{\theta}=-r \cos \phi, \quad \beta_{\phi}=r \cos \theta \sin \phi
\end{gathered}
$$

A similar analysis can be performed for the poloydal part β^{r}, η of th shift. The conclusions are:

For $l=1$, two couples of homogeneous solutions exist. That means that a rigid translation of the horizon can be chosen.

For $l \neq 1$ only β^{r} can be given on the horizon: The horizon can breath.

Finally singular equations exist for the metric coefficients $h^{i k}$. For some coefficient $\left(h^{r r}\right)$ a

boundary condition on the horizon can be given, for other coefficients $\left(h^{\theta \theta}\right)$ not.

Equation $\triangle G+\frac{1}{r-1}\left(k_{1} \frac{d}{d r}+\frac{k_{2}}{r}\right) G=0$
Consider the equation
$\frac{d^{2} G}{d r^{2}}+k_{0} \frac{1}{r} \frac{d G}{d r}+\frac{1}{r^{2}}\left(-l(l+1)+k_{l}\right) G+\frac{1}{r-1}\left(k_{1} \frac{d}{d r}+\frac{k_{2}}{r}\right) G=0$
For $k_{1}=k_{2}=0$ the above equation has two regular solution regular a t $r=0$ and at $r=\infty$, k_{l} if $k_{l}=\left(\left(k_{0}-1\right)^{2}-1\right) / 4$.
$g_{1}=r^{j}, j_{1}=\frac{1-k_{0}-(2 l+1)}{2}, j_{2}=\frac{1-k_{0}+(2 l+1)}{2}$
Note that the two solutions $r^{j_{1}}$ and $r^{j_{2}}$ are integer numbers if k_{0} is integer to. In this section, we study the number and the aanalytical properties of the solution for different values of the parameter k_{0}, k_{1}, k_{2}.

Case $k_{1} \neq 0$ and $k_{1} \neq|1|$

Without losses of generality we consider only the case $k_{2}=0$. In fact by putting $\bar{G}=G r^{k_{2} / k 1}$
the equation for the new function \bar{G} will be transformed in an equation having $k_{2}=0$ The case $\left|k_{1}\right|=1$ was already discussed.

The technique used consists in studying the behavior of the solution around the singular point $r=1$. For that we introduce the new variable $x=r-1$. The Eq. 8 writes

$$
\begin{equation*}
\frac{d^{2} G}{d x^{2}}+k_{0} \frac{d G}{d x}+\left(-l(l+1)+k_{l}\right) G+\frac{1}{x} k_{1} \frac{d}{d x} G=0 \tag{9}
\end{equation*}
$$

We look for an homogeneous solution $H_{1}(x)$ by making a series expansion

$$
H_{1}(x)=a_{0}+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

. The coefficients a_{0} and a_{2} must satisfy the relation

$$
\begin{equation*}
2\left(1+k_{1}\right) a_{2}+\left(-l(l+1)+k_{l}\right) a_{0}=0 \tag{10}
\end{equation*}
$$

we see that $k_{1}=-1$ Tthe pathological case $a_{0}=0$ and the nonvanishing homogeneous solution does not exist.

A second homogeneous solution $H_{2}(x)$ can be found by searching a solution that vanishes at $x=0,(r=1)$. We put $H_{2}(x)=x^{j}$ we obtain

$$
j(j-1)+j k_{1}=0
$$

from which

$$
\begin{equation*}
j=-k_{1}+1 \tag{11}
\end{equation*}
$$

Therefore $H_{2}(x)$ will be

$$
\begin{equation*}
H_{2}(x)=x^{j}\left(1+a_{j+1} x+\ldots\right) \tag{12}
\end{equation*}
$$

where j is given by the Eq.(11) we see that if $k_{1}<1$ then the solution is regular, moreover if k_{1} is integer number $k_{1} \leq-2$ the solution has a polynomial behavior near the singularity. Conclusions: If $k_{1}<2$ Then it exist two independent homogeneous solutions of the equation Eq. 8

Numerical solution of the homogeneous equations

If a non vanishing solution exists we shall proceed in the following way take a solution of the first order differential equation appearing in the singular term of the Eq.(8):

$$
\begin{equation*}
g_{0}=r^{\frac{-k_{2}}{k_{1}}} \tag{13}
\end{equation*}
$$

This solution, in general is not a solution of the the second order equation (8) Introduce g_{0} in the Eq.(8) and compute the rest R. Solve the non homogeneous equation

$$
\begin{equation*}
\frac{d^{2} G}{d r^{2}}+\frac{k_{0}}{r} \frac{d G}{d r}+\frac{1}{r^{2}}\left(k_{l}-l(l+1)\right) G+\frac{1}{x}\left(k_{1} \frac{d}{d r}+\frac{k_{2}}{r}\right) G=-R \tag{14}
\end{equation*}
$$

with the Galerkin approximation by using a new set of function Φ_{n} vanishing as x^{2}. We can use the set of (non orthogonal functions)

$$
\begin{equation*}
\Phi_{n}=(r-1)^{2} T_{n}(r) \tag{15}
\end{equation*}
$$

Let be g_{p} this particular solution, The homoge-
neous H_{1} solution of the EQ.(8) will be

$$
\begin{equation*}
H_{1}=g_{p}+g_{0} \tag{16}
\end{equation*}
$$

Numerical implementation

In this section I will show how to find numerically the homogeneouwe see that if $k_{1}<1$ then the solution is regular, moreover if k_{1} is integer number $k_{1} \leq-2$ the solution has a polynomial behavior near the singularity.
Conclusions: If $k_{1}<2$ Then it exist two independent homogeneous solutions of the equation Eq. 8
Numerical solution of the homogeneous equations

If a non vanishing solution exists we shall proceed in the following way take a solution of the first order differential equation appearing in the singular term of the Eq.(8):

$$
\begin{equation*}
g_{0}=r^{\frac{-k_{2}}{k_{1}}} \tag{17}
\end{equation*}
$$

This solution, in general is not a solution of the the second order equation (8) Introduce g_{0} in the Eq.(8) and compute the rest R. Solve the non homogeneous equation

$$
\begin{equation*}
\frac{d^{2} G}{d r^{2}}+\frac{k_{0}}{r} \frac{d G}{d r}+\frac{1}{r^{2}}\left(k_{l}-l(l+1)\right) G+\frac{1}{x}\left(k_{1} \frac{d}{d r}+\frac{k_{2}}{r}\right) G=-R \tag{18}
\end{equation*}
$$

with the Galerkin approximation by using a new set of function Φ_{n} vanishing as x^{2}. We can use the set of (non orthogonal functions)

$$
\begin{equation*}
\Phi_{n}=(r-1)^{2} T_{n}(r) \tag{19}
\end{equation*}
$$

Let be g_{p} this particular solution, The homogeneous H_{1} solution of the EQ.(refeqg) will be

$$
\begin{equation*}
H_{1}=g_{p}+g_{0} \tag{20}
\end{equation*}
$$

Numerical implementation

In this section I will show how to find numerically the hogeneos solutions. We shall consider
the solution H_{2} that vanishes at $r=1$
Let be \mathcal{O}_{i}^{j} the matrix of the operator of the equation Eq.(9)
$\mathcal{O}=r^{2} \frac{d^{2}}{d r^{2}}+r \frac{d}{d r}+k_{l}-l(l+1)+\frac{r}{x}\left(r k_{1} \frac{d}{d r}+k_{2}\right)$
(21)
with respect the Galerkin basis

$$
\Phi_{n}(r)=(r-1)^{2} T_{n}(r)
$$

Finding H_{2} it means to find the coefficients a_{n} of the expansion

$$
H_{2}(r)=\sum a_{n} \Phi_{n}(r)
$$

Consequently we have to find a non trivial solution of the algebraic system of equations

$$
\begin{equation*}
\mathcal{O}_{i}^{j} a_{j}=0 \tag{22}
\end{equation*}
$$

A such a solution exists because the determinant of the matrix \mathcal{O}_{i}^{j} vanishes. We shall replace the last line of the system (22) by

$$
\mathcal{O}_{N}^{j}=1,0,0, \ldots
$$

and we impose that the first coefficient $a_{1}=1$ the system will look as

$$
\begin{aligned}
\mathcal{O}_{1}^{1} a_{1}+\mathcal{O}_{1}^{2} a_{2}+\mathcal{O}_{1}^{3} a_{3}+\ldots & =0 \\
\mathcal{O}_{2}^{1} a_{1}+\mathcal{O}_{2}^{2} a_{2}+\mathcal{O}_{2}^{3} a_{3}+\ldots . & =0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & =0 \\
a_{1}+0+0+0+0+0+\ldots . & =1
\end{aligned}
$$

Solution of the inhomogeneos equations (The pathological case)

We shall consider the solution of the thoroidal component of the shift:
$r^{2} \frac{d^{2} \mu}{d r^{2}}+2 r \frac{d \mu}{d r}-l(l+1) \mu+\frac{r^{2}}{x}\left(-\frac{d \mu}{d r}+\frac{\mu}{r}+S_{1}\right)=r^{2} S_{2}$
$(x=r-1)$ The case $k_{1}=-1$ is pathological, because it exists a non vanishing homogeneous soluttion at $r=1$ only for $l=1$. In order to handle the singular term S_{1} / x we define a new
function

$$
\tilde{S}_{1}=S_{1}(r)-q
$$

where $q=S_{1}(1)$. Thus function vanishes at $r=1$ an we re=writw the above equation as
$r^{2} \frac{d^{2} \mu}{d r^{2}}+2 r \frac{d \mu}{d r}-l(l+1) \mu+\frac{r^{2}}{x}\left(-\frac{d \mu}{d r}+\frac{\mu}{r}+q\right)=r^{2}\left(S_{2}+\frac{\tilde{S}_{1}}{x}\right)$
We look for a solution $\tilde{\mu}$ such thta

$$
\tilde{\mu}=-q x+F(r)
$$

where $F r$ vanishes as x^{2} at $r=1$. By replacing $\tilde{\mu}$ we have

$$
\begin{gather*}
r^{2} \frac{d^{2} F}{d r^{2}}+2 r \frac{d F}{d r}-l(l+1) F+\frac{r^{2}}{x}\left(-\frac{d F}{d r}+\frac{F}{r}\right) \tag{25}\\
\quad=r^{2}\left[S_{2}+\frac{\tilde{S}_{1}}{x}-q(3 r-l(l+1) x]\right. \tag{26}
\end{gather*}
$$

and the solution is obtained by expanding F on the Galerkin base as was done beore.
and the solution is obtained by expanding F on the Galerkin base as was done before. ${ }^{2}$

[^1]Finding Kerr solution startinf from nothing

We show how construct an apprxomitatd Kerr solution as an application of the above formalism.

Start frm the flat metric $f_{i k}$.
First step:
Find a solution of the lapse equation

$$
\triangle N=0
$$

with the B,C. $N(1)=0, N(\infty)=1$ This solution can be

$$
N(r)=1-\frac{1}{r}
$$

Second step:
Find a solution of the linearised eequation for Ψ^{4}

$$
\triangle \Psi^{4}=0
$$

where Ψ is the conformal factor. The solution
must satisfy the B.C. of an apparent horizon

$$
\frac{d \Psi^{4}}{d r}=-\left.1\right|_{r=1}, \quad \Psi^{4}=\left.1\right|_{r=\infty}
$$

This solution is

$$
\Psi^{4}=\frac{1}{r}
$$

$3^{\text {th }}$ step: Find (numerically) a solution for μ_{l} with the B.C.

$$
\mu_{l}=\left.\delta_{l}^{1} \mu_{0}\right|_{r=1}, \quad \mu_{l}=\left.0\right|_{r=\infty}
$$

where δ_{l}^{i} is the Kronler δ Iterate
Note that th source of μ vanishes at $r=1$ at each iterartion. (See footnote)

Fig. 1) shows the lapse N. Fig.2) shows the fonction $N_{0}=N / x$ (in the first domain) Fig. 3) the shift (for different values of θ The other figures show the convergence of the iteration.

Conclusion
We have studied the analytical properties of the
solutions of singular elliptical P.D.E. Spectral methods allows to us to compute numerical solutions of singular equations.
As examplese computed the Kerr solution within the conformally flat approximation. The algorithm has shown to be robust (in the sense that it converges exponentially without a relaxation parameter).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

[^0]: ${ }^{1}$ See the paper by S.Bonazzola et al. Phys.Rev.D 70 (2004), 104007

[^1]: ${ }^{2}$ Note that if a regular solution is required, the source must vanishes at $r=1$

