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Introduction

Introduction

Basic idea: approximate functions R → R by polynomials

Polynomials are the only functions that a computer can evaluate exactely.

Two types of numerical methods based on polynomial approximations:

spectral methods: high order polynomials on a single domain (or a few
domains)

finite elements: low order polynomials on many domains
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Introduction

Framework of this lecture

We consider real-valued functions on the compact interval [−1, 1]:

f : [−1, 1] −→ R

We denote

by P the set all real-valued polynomials on [−1, 1]:

∀p ∈ P, ∀x ∈ [−1, 1], p(x) =
n∑

i=0

ai xi

by PN (where N is a positive integer), the subset of polynomials of degree at
most N .
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Introduction

Is it a good idea to approximate functions by polynomials ?

For continuous functions, the answer is yes:

Theorem (Weierstrass, 1885)

P is a dense subspace of the space C0([−1, 1]) of all continuous functions on
[−1, 1], equiped with the uniform norm ‖.‖∞.a

aThis is a particular case of the Stone-Weierstrass theorem

The uniform norm or maximum norm is defined by ‖f‖∞ = max
x∈[−1,1]

|f(x)|

Other phrasings:

For any continuous function on [−1, 1], f , and any ε > 0, there exists a
polynomial p ∈ P such that ‖f − p‖∞ < ε.

For any continuous function on [−1, 1], f , there exists a sequence of polynomials
(pn)n∈N which converges uniformly towards f : lim

n→∞
‖f − pn‖∞ = 0.
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Introduction

Best approximation polynomial

For a given continuous function: f ∈ C0([−1, 1]), a best approximation
polynomial of degree N is a polynomial p∗N (f) ∈ PN such that

‖f − p∗N (f)‖∞ = min {‖f − p‖∞, p ∈ PN}

Chebyshev’s alternant theorem (or equioscillation theorem)

For any f ∈ C0([−1, 1]) and N ≥ 0, the best approximation polynomial p∗N (f)
exists and is unique. Moreover, there exists N + 2 points x0, x1, ... xN+1 in [-1,1]
such that

f(xi)− p∗N (f)(xi) = (−1)i ‖f − p∗N (f)‖∞, 0 ≤ i ≤ N + 1

or f(xi)− p∗N (f)(xi) = (−1)i+1 ‖f − p∗N (f)‖∞, 0 ≤ i ≤ N + 1

Corollary: p∗N (f) interpolates f in N + 1 points.
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Introduction

Illustration of Chebyshev’s alternant theorem

N = 1
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Interpolation on an arbitrary grid

Interpolation on an arbitrary grid

Definition: given an integer N ≥ 1, a grid is a set of N + 1 points
X = (xi)0≤i≤N in [-1,1] such that −1 ≤ x0 < x1 < · · · < xN ≤ 1. The N + 1
points (xi)0≤i≤N are called the nodes of the grid.

Theorem

Given a function f ∈ C0([−1, 1]) and a grid of N + 1 nodes, X = (xi)0≤i≤N ,
there exist a unique polynomial of degree N , IX

N f , such that

IX
N f(xi) = f(xi), 0 ≤ i ≤ N

IX
N f is called the interpolant (or the interpolating polynomial) of f through the

grid X.
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Interpolation on an arbitrary grid

Lagrange form of the interpolant

The interpolant IX
N f can be expressed in the Lagrange form:

IX
N f(x) =

N∑
i=0

f(xi) `X
i (x),

where `X
i (x) is the i-th Lagrange cardinal polynomial associated with the grid X:

`X
i (x) :=

N∏
j=0
j 6=i

x− xj

xi − xj
, 0 ≤ i ≤ N

The Lagrange cardinal polynomials are such that

`X
i (xj) = δij , 0 ≤ i, j ≤ N
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
0 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
1 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
2 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
3 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
4 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
5 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
6 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
7 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8 `X
8 (x)
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Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid N = 8
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Interpolation on an arbitrary grid

Interpolation error with respect to the best approximation
error

Let N ∈ N, X = (xi)0≤i≤N a grid of N + 1 nodes and f ∈ C0([−1, 1]).

Let us consider the interpolant IX
N f of f through the grid X.

The best approximation polynomial p∗N (f) is also an interpolant of f at N + 1
nodes (in general different from X) reminder

How does the error ‖f − IX
N f‖∞ behave with respect to the smallest possible

error ‖f − p∗N (f)‖∞ ?

The answer is given by the formula:

‖f − IX
N f‖∞ ≤ (1 + ΛN (X)) ‖f − p∗N (f)‖∞

where ΛN (X) is the Lebesgue constant relative to the grid X:

ΛN (X) := max
x∈[−1,1]

N∑
i=0

∣∣`X
i (x)

∣∣
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Interpolation on an arbitrary grid

Lebesgue constant

The Lebesgue constant contains all the information on the effects of the choice of
X on ‖f − IX

N f‖∞.

Theorem (Erdős, 1961)

For any choice of the grid X, there exists a constant C > 0 such that

ΛN (X) >
2

π
ln(N + 1)− C

Corollary: ΛN (X) →∞ as N →∞

In particular, for a uniform grid, ΛN (X) ∼ 2N+1

eN lnN
as N →∞ !

This means that for any choice of type of sampling of [−1, 1], there exists a
continuous function f ∈ C0([−1, 1]) such that IX

N f does not convergence
uniformly towards f .
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Interpolation on an arbitrary grid

Example: uniform interpolation of a “gentle” function

f(x) = cos(2 exp(x)) uniform grid N = 4 : ‖f − IX
4 f‖∞ ' 1.40
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Interpolation on an arbitrary grid

Example: uniform interpolation of a “gentle” function

f(x) = cos(2 exp(x)) uniform grid N = 6 : ‖f − IX
6 f‖∞ ' 1.05
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Interpolation on an arbitrary grid

Example: uniform interpolation of a “gentle” function

f(x) = cos(2 exp(x)) uniform grid N = 8 : ‖f − IX
8 f‖∞ ' 0.13
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Interpolation on an arbitrary grid

Example: uniform interpolation of a “gentle” function

f(x) = cos(2 exp(x)) uniform grid N = 12 : ‖f − IX
12f‖∞ ' 0.13
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Interpolation on an arbitrary grid

Example: uniform interpolation of a “gentle” function

f(x) = cos(2 exp(x)) uniform grid N = 16 : ‖f − IX
16f‖∞ ' 0.025
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Interpolation on an arbitrary grid

Example: uniform interpolation of a “gentle” function

f(x) = cos(2 exp(x)) uniform grid N = 24 : ‖f − IX
24f‖∞ ' 4.6 10−4
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Interpolation on an arbitrary grid

Runge phenomenon

f(x) =
1

1 + 16x2
uniform grid N = 4 : ‖f − IX

4 f‖∞ ' 0.39
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Interpolation on an arbitrary grid

Runge phenomenon

f(x) =
1

1 + 16x2
uniform grid N = 6 : ‖f − IX

6 f‖∞ ' 0.49
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Interpolation on an arbitrary grid

Runge phenomenon

f(x) =
1

1 + 16x2
uniform grid N = 8 : ‖f − IX

8 f‖∞ ' 0.73
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Interpolation on an arbitrary grid

Runge phenomenon

f(x) =
1

1 + 16x2
uniform grid N = 12 : ‖f − IX

12f‖∞ ' 1.97
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Interpolation on an arbitrary grid

Runge phenomenon

f(x) =
1

1 + 16x2
uniform grid N = 16 : ‖f − IX

16f‖∞ ' 5.9
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Interpolation on an arbitrary grid

Runge phenomenon

f(x) =
1

1 + 16x2
uniform grid N = 24 : ‖f − IX

24f‖∞ ' 62

Eric Gourgoulhon (LUTH, Meudon) Polynomial interpolation Meudon, 14 November 2005 16 / 50

Interpolation on an arbitrary grid

Evaluation of the interpolation error

Let us assume that the function f is sufficiently smooth to have derivatives at
least up to the order N + 1, with f (N+1) continuous, i.e. f ∈ CN+1([−1, 1]).

Theorem (Cauchy)

If f ∈ CN+1([−1, 1]), then for any grid X of N + 1 nodes, and for any
x ∈ [−1, 1], the interpolation error at x is

f(x)− IX
N (x) =

f (N+1)(ξ)

(N + 1)!
ωX

N+1(x) (1)

where ξ = ξ(x) ∈ [−1, 1] and ωX
N+1(x) is the nodal polynomial associated with

the grid X.

Definition: The nodal polynomial associated with the grid X is the unique
polynomial of degree N + 1 and leading coefficient 1 whose zeros are the N + 1
nodes of X:

ωX
N+1(x) :=

N∏
i=0

(x− xi)
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Interpolation on an arbitrary grid

Example of nodal polynomial

Uniform grid N = 8
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Interpolation on an arbitrary grid

Minimizing the interpolation error by the choice of grid

In Eq. (1), we have no control on f (N+1), which can be large.
For example, for f(x) = 1/(1 + α2x2), ‖f (N+1)‖∞ = (N + 1)! αN+1.

Idea: choose the grid X so that ωX
N+1(x) is small, i.e. ‖ωX

N+1‖∞ is small.

Notice: ωX
N+1(x) has leading coefficient 1: ωX

N+1(x) = xN+1 +
N∑

i=0

ai xi.

Theorem (Chebyshev)

Among all the polynomials of degree N + 1 and leading coefficient 1, the unique
polynomial which has the smallest uniform norm on [−1, 1] is the (N + 1)-th
Chebyshev polynomial divided by 2N : TN+1(x)/2N .

Since ‖TN+1‖∞ = 1, we conclude that if we choose the grid nodes (xi)0≤i≤N to
be the N + 1 zeros of the Chebyshev polynomial TN+1, we have

‖ωX
N+1‖∞ =

1

2N

and this is the smallest possible value.
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Interpolation on an arbitrary grid

Chebyshev-Gauss grid

The grid X = (xi)0≤i≤N such that the xi’s are the N + 1 zeros of the Chebyshev
polynomial of degree N + 1 is called the Chebyshev-Gauss (CG) grid.
It has much better interpolation properties than the uniform grid considered so far.
In particular, from Eq. (1), for any function f ∈ CN+1([−1, 1]),∥∥f − ICG

N f
∥∥
∞ ≤ 1

2N (N + 1)!

∥∥∥f (N+1)
∥∥∥
∞

If f (N+1) is uniformly bounded, the convergence of the interpolant ICG
N f towards

f when N →∞ is then extremely fast.
Also the Lebesgue constant associated with the Chebyshev-Gauss grid is small:

ΛN (CG) ∼ 2

π
ln(N + 1) as N →∞

This is much better than uniform grids and close to the optimal value reminder
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Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of f(x) = 1
1+16x2

f(x) =
1

1 + 16x2
CG grid N = 4 : ‖f − ICG

4 f‖∞ ' 0.31
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Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of f(x) = 1
1+16x2

f(x) =
1

1 + 16x2
CG grid N = 6 : ‖f − ICG

6 f‖∞ ' 0.18
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Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of f(x) = 1
1+16x2

f(x) =
1

1 + 16x2
CG grid N = 8 : ‖f − ICG

8 f‖∞ ' 0.10
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Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of f(x) = 1
1+16x2

f(x) =
1

1 + 16x2
CG grid N = 12 : ‖f − ICG

12 f‖∞ ' 3.8 10−2
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Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of f(x) = 1
1+16x2

f(x) =
1

1 + 16x2
CG grid N = 16 : ‖f − ICG

16 f‖∞ ' 1.5 10−2
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Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of f(x) = 1
1+16x2

f(x) =
1

1 + 16x2
CG grid N = 24 : ‖f − ICG

24 f‖∞ ' 2.0 10−3

no Runge phenomenon !
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Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of f(x) = 1
1+16x2

Variation of the interpolation error as N increases

Eric Gourgoulhon (LUTH, Meudon) Polynomial interpolation Meudon, 14 November 2005 22 / 50



Interpolation on an arbitrary grid

Chebyshev polynomials = orthogonal polynomials

The Chebyshev polynomials, the zeros of which provide the Chebyshev-Gauss
nodes, constitute a family of orthogonal polynomials, and the Chebyshev-Gauss
nodes are associated to Gauss quadratures.
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Expansions onto orthogonal polynomials

Hilbert space L2
w(−1, 1)

Framework: Let us consider the functional space

L2
w(−1, 1) =

{
f : (−1, 1) → R,

∫ 1

−1

f(x)2 w(x) dx < ∞
}

where w : (−1, 1) → (0,∞) is an integrable function, called the weight function.

L2
w(−1, 1) is a Hilbert space for the scalar product

(f |g)w :=

∫ 1

−1

f(x) g(x) w(x) dx

with the associated norm

‖f‖w := (f |f)1/2
w
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Expansions onto orthogonal polynomials

Orthogonal polynomials

The set P of polynomials on [−1, 1] is a subspace of L2
w(−1, 1).

A family of orthogonal polynomials is a set (pi)i∈N such that

pi ∈ P
deg pi = i

i 6= j ⇒ (pi|pj)w = 0

(pi)i∈N is then a basis of the vector space P: P = span {pi, i ∈ N}

Theorem

A family of orthogonal polynomial (pi)i∈N is a Hilbert basis of L2
w(−1, 1) :

∀f ∈ L2
w(−1, 1), f =

∞∑
i=0

f̃i pi with f̃i :=
(f |pi)w

‖pi‖2
w

.

The above infinite sum means lim
N→∞

∥∥∥∥∥f −
N∑

i=0

f̃i pi

∥∥∥∥∥
w

= 0
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Expansions onto orthogonal polynomials

Jacobi polynomials

Jacobi polynomials are orthogonal polynomials with respect to the weight

w(x) = (1− x)α(1 + x)β

Subcases:

Legendre polynomials Pn(x): α = β = 0, i.e. w(x) = 1

Chebyshev polynomials Tn(x): α = β = −1

2
, i.e. w(x) =

1√
1− x2

Jacobi polynomials are eigenfunctions of the singular1 Sturm-Liouville problem

− d

dx

[
(1− x2) w(x)

du

dx

]
= λ w(x) u, x ∈ (−1, 1)

1singular means that the coefficient in front of du/dx vanishes at the extremities of the
interval [−1, 1]
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Expansions onto orthogonal polynomials

Legendre polynomials

w(x) = 1:

∫ 1

−1

Pi(x)Pj(x) dx =
2

2i + 1
δij

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

Pi+1(x)=

2i+1
i+1 xPi(x)− i

i+1 Pi−1(x)
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Expansions onto orthogonal polynomials

Chebyshev polynomials

w(x) =
1√

1− x2
:

∫ 1

−1

Ti(x)Tj(x)
dx√

1− x2
=

π

2
(1 + δ0i) δij

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

cos(nθ) = Tn(cos θ)

Ti+1(x) = 2xTi(x)− Ti−1(x)
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Expansions onto orthogonal polynomials

Legendre and Chebyshev compared

[from Fornberg (1998)]
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Expansions onto orthogonal polynomials

Orthogonal projection on PN

Let us consider f ∈ L2
w(−1, 1) and a family (pi)i∈N of orthogonal polynomials

with respect to the weight w.
Since (pi)i∈N is a Hilbert basis of L2

w(−1, 1) reminder

we have f(x) =
∞∑
i=0

f̃i pi(x) with f̃i :=
(f |pi)w

‖pi‖2
w

.

The truncated sum

Πw
Nf(x) :=

N∑
i=0

f̃i pi(x)

is a polynomial of degree N : it is the orthogonal projection of f onto the finite
dimensional subspace PN with respect to the scalar product (.|.)w.
We have

lim
N→∞

‖f − Πw
Nf‖w = 0

Hence Πw
Nf can be considered as a polynomial approximation of the function f .
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Expansions onto orthogonal polynomials

Example: Chebyshev projection of f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 4 : ‖f − Πw
4 f‖∞ ' 0.66

Eric Gourgoulhon (LUTH, Meudon) Polynomial interpolation Meudon, 14 November 2005 32 / 50



Expansions onto orthogonal polynomials

Example: Chebyshev projection of f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 6 : ‖f − Πw
6 f‖∞ ' 0.30

Eric Gourgoulhon (LUTH, Meudon) Polynomial interpolation Meudon, 14 November 2005 32 / 50

Expansions onto orthogonal polynomials

Example: Chebyshev projection of f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 8 : ‖f − Πw
8 f‖∞ ' 4.9 10−2
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Expansions onto orthogonal polynomials

Example: Chebyshev projection of f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 12 : ‖f − Πw
12f‖∞ ' 6.1 10−3

Eric Gourgoulhon (LUTH, Meudon) Polynomial interpolation Meudon, 14 November 2005 32 / 50

Expansions onto orthogonal polynomials

Example: Chebyshev projection of f(x) = cos(2 exp(x))

Variation of the projection error ‖f − Πw
Nf‖∞ as N increases
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Expansions onto orthogonal polynomials

Evaluation of the coefficients

The coefficients f̃i of the orthogonal projection of f are given by

f̃i :=
(f |pi)w

‖pi‖2
w

=
1

‖pi‖2
w

∫ 1

−1

f(x) pi(x) w(x) dx (2)

Problem: the above integral cannot be computed exactly; we must seek a
numerical approximation.

Solution: Gaussian quadrature
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Expansions onto orthogonal polynomials

Gaussian quadrature

Theorem (Gauss, Jacobi)

Let (pi)i∈N be a family of orthogonal polynomials with respect to some weight w.
For N > 0, let X = (xi)0≤i≤N be the grid formed by the N + 1 zeros of the
polynomial pN+1 and

wi :=

∫ 1

−1

`X
i (x) w(x) dx

where `X
i is the i-th Lagrange cardinal polynomial of the grid X reminder

Then

∀f ∈ P2N+1,

∫ 1

−1

f(x) w(x) dx =
N∑

i=0

wif(xi)

If f 6∈ P2N+1, the above formula provides a good approximation of the integral.
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Expansions onto orthogonal polynomials

Gauss-Lobatto quadrature

The nodes of the Gauss quadrature, being the zeros of pN+1, do not encompass
the boundaries −1 and 1 of the interval [−1, 1]. For numerical purpose, it is
desirable to include these points in the boundaries.

This possible at the price of reducing by 2 units the degree of exactness of the
Gauss quadrature
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Expansions onto orthogonal polynomials

Gauss-Lobatto quadrature

Theorem (Gauss-Lobatto quadrature)

Let (pi)i∈N be a family of orthogonal polynomials with respect to some weight w.
For N > 0, let X = (xi)0≤i≤N be the grid formed by the N + 1 zeros of the
polynomial

qN+1 = pN+1 + αpN + βpN−1

where the coefficients α and β are such that x0 = −1 and xN = 1.
Let

wi :=

∫ 1

−1

`X
i (x) w(x) dx

where `X
i is the i-th Lagrange cardinal polynomial of the grid X.

Then

∀f ∈ P2N−1,

∫ 1

−1

f(x) w(x) dx =
N∑

i=0

wif(xi)

Notice: f ∈ P2N−1 instead of f ∈ P2N+1 for Gauss quadrature.
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Expansions onto orthogonal polynomials

Gauss-Lobatto quadrature

Remark: if the (pi) are Jacobi polynomials, i.e. if w(x) = (1− x)α(1 + x)β , then
the Gauss-Lobatto nodes which are strictly inside (−1, 1), i.e. x1, . . . , xN−1, are
the N − 1 zeros of the polynomial p′N , or equivalently the points where the
polynomial pN is extremal.

This of course holds for Legendre and Chebyshev polynomials.
For Chebyshev polynomials, the Gauss-Lobatto nodes and weights have simple
expressions:

xi = − cos
πi

N
, 0 ≤ i ≤ N

w0 = wN =
π

2N
, wi =

π

N
, 1 ≤ i ≤ N − 1

Note: in the following, we consider only Gauss-Lobatto quadratures
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Expansions onto orthogonal polynomials

Discrete scalar product

The Gauss-Lobatto quadrature motivates the introduction of the following scalar
product:

〈f |g〉N =
N∑

i=0

wif(xi)g(xi)

It is called the discrete scalar product associated with the Gauss-Lobatto nodes
X = (xi)0≤i≤N

Setting γi := 〈pi|pi〉N , the discrete coefficients associated with a function f are
given by

f̂i :=
1

γi
〈f |pi〉N , 0 ≤ i ≤ N

which can be seen as approximate values of the coefficients f̃i provided by the
Gauss-Lobatto quadrature [cf. Eq. (2)]
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Expansions onto orthogonal polynomials

Discrete coefficients and interpolating polynomial

Let IGL
N f be the interpolant of f at the Gauss-Lobatto nodes X = (xi)0≤i≤N .

Being a polynomial of degree N , it is expandable as

IGL
N f(x) =

N∑
i=0

ai pi(x)

Then, since IGL
N f(xj) = f(xj),

f̂i =
1

γi
〈f |pi〉N =

1

γi
〈IGL

N f |pi〉N =
1

γi

N∑
j=0

aj〈pj |pi〉N

Now, if j = i, 〈pj |pi〉N = γi by definition. If j 6= i, pjpi ∈ P2N−1 so that the
Gauss-Lobatto formula holds and gives 〈pj |pi〉N = (pj |pi)w = 0. Thus we

conclude that 〈pj |pi〉N = γiδij so that the above equation yields f̂i = ai, i.e. the
discrete coefficients are nothing but the coefficients of the expansion of
the interpolant at the Gauss-Lobato nodes
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Expansions onto orthogonal polynomials

Spectral representation of a function

In a spectral method, the numerical representation of a function f is through its
interpolant at the Gauss-Lobatto nodes:

IGL
N f(x) =

N∑
i=0

f̂i pi(x)

The discrete coefficients f̂i are computed as

f̂i =
1

γi

N∑
j=0

wjf(xj)pi(xj)

IGL
N f(x) is an approximation of the truncated series Πw

Nf(x) =
N∑

i=0

f̃i pi(x),

which is the orthogonal projection of f onto the polynomial space PN .
Πw

Nf should be the true spectral representation of f , but in general it is not
computable exactly.
The difference between IGL

N f and Πw
Nf is called the aliasing error
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Expansions onto orthogonal polynomials

Example: aliasing error for f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 4

red: f ; blue: Πw
Nf ; green: IGL

N f
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Expansions onto orthogonal polynomials

Example: aliasing error for f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 6

red: f ; blue: Πw
Nf ; green: IGL

N f
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Expansions onto orthogonal polynomials

Example: aliasing error for f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 8

red: f ; blue: Πw
Nf ; green: IGL

N f
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Expansions onto orthogonal polynomials

Example: aliasing error for f(x) = cos(2 exp(x))

f(x) = cos(2 exp(x)) w(x) = (1− x2)−1/2 N = 12

red: f ; blue: Πw
Nf ; green: IGL

N f

Eric Gourgoulhon (LUTH, Meudon) Polynomial interpolation Meudon, 14 November 2005 42 / 50



Expansions onto orthogonal polynomials

Aliasing error = contamination by high frequencies

Aliasing of a sin(x) wave by a sin(5x) wave on a 4-points grid
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Convergence of the spectral expansions

Sobolev norm

Let us consider a function f ∈ Cm([−1, 1]), with m ≥ 0.

The Sobolev norm of f with respect to some weight function w is

‖f‖Hm
w

:=

(
m∑

k=0

∥∥∥f (k)
∥∥∥2

w

)1/2
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Convergence of the spectral expansions

Convergence rates for f ∈ Cm([−1, 1])

Chebyshev expansions:

truncation error :

‖f − Πw
Nf‖w ≤ C1

Nm
‖f‖Hm

w
and ‖f − Πw

Nf‖∞ ≤ C2(1 + lnN)

Nm

m∑
k=0

∥∥∥f (k)
∥∥∥
∞

interpolation error :∥∥f − IGL
N f

∥∥
w
≤ C3

Nm
‖f‖Hm

w
and

∥∥f − IGL
N f

∥∥
∞ ≤ C4

Nm−1/2
‖f‖Hm

w

Legendre expansions:

truncation error :

‖f − Πw
Nf‖w ≤ C1

Nm
‖f‖Hm

w
and ‖f − Πw

Nf‖∞ ≤ C2

Nm−1/2
V (f (m))

interpolation error :∥∥f − IGL
N f

∥∥
w
≤ C3

Nm−1/2
‖f‖Hm

w
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Convergence of the spectral expansions

Evanescent error for smooth functions

If f ∈ C∞([−1, 1]), the error of the spectral expansions Πw
Nf or IGL

N f decays
more rapidly than any power of N .

In practice: exponential decay example

This error is called evanescent.
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Convergence of the spectral expansions

For non-smooth functions: Gibbs phenomenon

Extreme case: f discontinuous
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INTRODUCTION

Introduction One-domain methods Multi-domain methods Some LORENE objects

Type of problems

We will consider a differential equation :

Lu (x) = S (x) x ∈ U (1)

Bu (y) = 0 y ∈ ∂U (2)

where L are B are linear differential operators.
In the following, we will only consider one-dimensional cases U = [−1; 1].
We will also assume that u can be expanded on some functions :

ũ (x) =
N∑

n=0

ũnφn (x) . (3)

Depending on the choice of expansion functions φk, one can generate :

finite difference methods.

finite element method.

spectral methods.
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The weighted residual method

Given a scalar product on U , one makes the residual R = Lu− S small
in the sense :

∀k ∈ {0, 1, ....N} , (ξk, R) = 0, (4)

under the constraint that u verifies the boundary conditions.
The ξk are called the test functions.
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Standard spectral methods

The expansion functions are global orthogonal polynomials functions, like
Chebyshev and Legendre.
Depending on the choice of test functions :

Tau method

The ξk are the expansion functions. The boundary conditions are
enforced by an additional set of equations.

Collocation method

The ξk = δ (x− xk) and the boundary conditions are enforced by an
additional set of equations.

Galerkin method

The expansions and the test functions are chosen to fulfill the boundary
conditions.
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Optimal methods

Definition :

A numerical method is said to be optimal iff the resolution of the
equation does not introduce an error greater than the one already done
by interpoling the exact solution.

uexact is the exact solution.

INuexact is the interpolant of the exact solution.

unum. is the numerical solution.

The method is optimal iff maxΛ (|uexact − INuexact|) and
maxΛ (|uexact − unum.|) have the same behavior when N →∞.
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ONE-DOMAIN METHODS
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Matrix representation of L

The action of L on u can be given by a matrix Lij

If u =
N∑

k=0

ũkTk then

Lu =
N∑

i=0

N∑
j=0

Lij ũjTi

Lij is obtained by knowing the basis operation on the expansion basis.
The kth column is the coefficients of LTk.
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Example of elementary operations with Chebyshev

If f =
∞∑

n=0

anTn (x) then Hf =
∞∑

n=0

bnTn (x)

H is the multiplication by x

bn =
1

2
((1 + δ0n−1) an−1 + an+1) with n ≥ 1

H is the derivation

bn =
2

(1 + δ0n)

∞∑
p=n+1,p+n odd

pap

H is the second derivation

bn =
1

(1 + δ0n)

∞∑
p=n+2,p+n even

p
(
p2 − n2

)
ap
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Tau method

The test functions are the Tk

(Tk|R) = 0 implies :
N∑

j=0

Lkj ũj = s̃k (N + 1 equations).

The s̃k are the coefficients of the interpolant of the source.

Boundary conditions

u (x = −1) = 0 =⇒
N∑

j=0

(−1)j
ũj = 0

u (x = +1) = 0 =⇒
N∑

j=0

ũj = 0

One considers the N − 1 first residual equations and the 2 boundary
conditions. The unknowns are the ũk.
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Collocation method

The test functions are the δk = δ (x− xk)

(δn|R) = 0 implies that : Lu (xn) = s (xn) (N + 1 equations).

N∑
i=0

N∑
j=0

ũjLijTi (xn) = s (xn) ∀n ∈ [0, N ]

Boundary conditions

Like for the Tau-method they are enforced by two additional
equations.

One has to relax the residual conditions in x0 and xN .
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Galerkin method : choice of basis

We need a set of functions that

are easily given in terms of basis functions.

fulfill the boundary conditions.

Example

If one wants u (−1) = 0 and u (1) = 0, one can choose :

G2k (x) = T2k+2 (x)− T0 (x)

G2k+1 (x) = T2k+3 (x)− T1 (x)

Let us note that only N − 1 functions Gi must be considered to maintain
the same order of approximation (general feature).
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Transformation matrix

Definition

The Gi are given in terms of the Ti by a transformation matrix M
M is a matrix of size N + 1×N − 1.

Gi =
N∑

j=0

MjiTj ∀i ≤ N − 2 (5)

Example

Mij =


-1 0 -1
0 -1 0
1 0 0
0 1 0
0 0 1


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The Galerkin system (1)

Expressing the equations(Gn|R)

u is expanded on the Galerkin basis.

u =
N−2∑
i=0

ũG
i Gi (x) . (6)

The expression of Lu is obtained in terms of Ti via Mij and Lij .

(Gn|Lu) is computed by using, once again Mij

The source is NOT expanded in terms of Gi but by the Ti.

(Gn|S) is obtained by using Mij

This is N − 1 equations.

Introduction One-domain methods Multi-domain methods Some LORENE objects

The Galerkin system (2)

(Gn|R) = 0 ∀n ≤ N − 2

N−2∑
k=0

ũG
k

N∑
i=0

N∑
j=0

MinMjkLij (Ti|Ti) =
N∑

i=0

Mins̃i (Ti|Ti) , ∀n ≤ N − 2

(7)

The N − 1 unknowns are the coefficients ũG
n .

The transformation matrix M is then used to get :

u (x) =
N∑

k=0

(
N−2∑
n=0

MknũG
n

)
Tk
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MULTI-DOMAIN METHODS
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Multi-domain decomposition

Motivations

We have seen that discontinuous functions (or not C∞ functions)
are not well represented by spectral expansion.

However, in physics, we may be interested in such fields (for example
the surface of a strange star can produce discontinuities).

We also may need to use different functions in various regions of
space.

In order to cope with that, we need several domains in such a way
that the discontinuities lies at the boundaries.

By doing so, the functions are C∞ in every domain, preserving the
exponential convergence.
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Multi-domain setting

x =
1

2
(x1 − 1)

x =
1

2
(x2 + 1)

Spectral decomposition with respect to xi

Domain 1 : u (x < 0) =
N∑

i=0

ũ1
iTi (x1 (x))

Domain 2 : u (x > 0) =
N∑

i=0

ũ2
iTi (x2 (x))

Same thing for the source.

Note that
d

dx
= 2

d

dxi
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A multi-domain Tau method

Domain 1

(Tk|R) = 0 =⇒
N∑

j=0

Lkj ũ
1
j = s̃1

k

N + 1 equations and we relax the last two. (N-1 equations)

Same thing in domain 2.

Additional equations :

the 2 boundary conditions.

matching of the solution at x = 0.

matching of the first derivative at x = 0.

A complete system

2N-2 equations for residuals and 4 for the matching and boundary
conditions.

2N+2 unknowns, the ũ1
i and ũ2

i
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Homogeneous solution method

This method is the closest to the standard analytical way of solving linear
differential equations.

Principle

find a particular solution in each domain.

compute the homogeneous solutions in each domain.

determine the coefficients of the homogeneous solutions by
imposing :

the boundary conditions.
the matching of the solution at the boundary.
the matching of the first derivative.
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Homogeneous solutions

In general 2 in each domain and they can be known either :

by numerically solving Lu = 0.

or, most of the time, they can be found analytically.

The number of homogeneous solutions can be modified for regularity
reasons.



Introduction One-domain methods Multi-domain methods Some LORENE objects

Particular solution

In each domain, we can seek a particular solution g by a Tau residual
method.

(Tk|R) = 0 =⇒
N∑

j=0

Lkj g̃j = s̃k

However, due to the presence of homogeneous solutions, the matrix Lij

is degenerate.
More precisely, Lij is more and more degenerate as N →∞, the
homogeneous solution being better described by their interpolant.

N∑
j=0

Lkj h̃j → 0 when N →∞
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The non-degenerate operator

A non-degenerate operator O can be obtained by removing :

the m first columns of Lij (imposes that the first m coefficients of g
are 0).

the m last lines of Lij (relaxes the last m equations for the residual).

m is the number of homogeneous solutions (typically m = 2).

The matrix O is, generally, non-degenerate, and can be inverted.(true as
long as the m first coefficients of the HS are not 0...)
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Matching system

Example

2 domains.

2 homogeneous solutions in each of them.

The system (4 equations)

two boundary conditions (left and right).

matching of the solution across the boundary.

matching of the first radial derivative.

The unknowns are the coefficients of the homogeneous solutions (4 in
this particular case).
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Variational formulation

Warning : this method is easily applicable only when using Legendre
polynomials because it requires that w (x) = 1.
We will write Lu as Lu ≡ −u′′ + Fu, F being a first order differential
operator on u.

Starting point

weighted residual equation :

(ξ|R) = 0 =⇒
∫

ξ (−u′′ + Fu) dx =

∫
ξsdx

Integration by part :

[−ξu′] +

∫
ξ′u′dx +

∫
ξFudx =

∫
ξsdx

Test functions

As for the collocation method : ξ = δk = δ (x− xk) for all points but
x = −1 and x = 1.
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Various operators

Derivation in configuration space

g′ (xk) =
N∑

j=0

Dkjg (xj) (8)

First order operator F in the configuration space

Fu (xk) =
N∑

j=0

Fkju (xj) (9)
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Expression of the integrals

[−ξu′] +
∫

ξ′u′dx +
∫

ξFudx =
∫

ξsdx∫
ξnsdx =

N∑
i=0

ξn (xi) s (xi)wi = s (xn)wn

∫
ξnFudx =

N∑
i=0

ξn (xi) Fu (xi)wi =

 N∑
j=0

Fnju (xj)

wn

∫
ξ′nu′dx =

N∑
i=0

ξ′n (xi)u′ (xi) wi =
N∑

i=0

N∑
j=0

DijDinwiu (xj)
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Equations for the points inside the domains

[−ξu′] = 0 so that, in each domain :

N∑
i=0

N∑
j=0

DijDinwiu (xj) +

 N∑
j=0

Fnju (xj)

wn = s (xn) wn

In each domain : 0 < n < N , i.e. 2N-2 equations.
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Equations at the boundary

In the domain 1 :

n = N and [−ξu′] = −u′1 (x1 = 1;x = 0)

u′1 (x1 = 1) =
N∑

i=0

N∑
j=0

DijDiNwiu
1 (xj) +

 N∑
j=0

FNju
1 (xj)

wN

−s1 (xN ) wN

In the domain 2 :

n = 0 and [−ξu′] = u′2 (x2 = −1;x = 0)

u′2 (x2 = −1) = −
N∑

i=0

N∑
j=0

DijDi0wiu
2 (xj)−

 N∑
j=0

F0ju
2 (xj)

w0

+s2 (x0)w0
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Matching equation

u′1 (x1 = 1; x = 0) = u′2 (x2 = −1;x = 0) =⇒
N∑

i=0

N∑
j=0

DijDiNwiu
1 (xj) +

 N∑
j=0

FNju
1 (xj)

wN

+
N∑

i=0

N∑
j=0

DijDi0wiu
2 (xj) +

 N∑
j=0

F0ju
2 (xj)

w0

= s1 (xN ) wN + s2 (x0) w0

Additional equations

Boundary condition at x = −1 : u1 (x0) = 0

Boundary condition at x = 1 : u2 (xN ) = 0

Matching at x = 0 : u1 (xN ) = u2 (x0)

We solve for the unknowns ui (xj).
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Why Legendre ?

Suppose we use Chebyshev : w (x) =
1√

1− x2
.∫

−u′′fwdx = [−u′fw] +

∫
u′f ′w′dx

Difficult (if not impossible) to compute u′ at the boundary, given that w
is divergent there =⇒ difficult to impose the weak matching condition.
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SOME LORENE OBJECTS
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Array of double : the Tbl

Constructor : Tbl::Tbl(int ... ). The number of dimension is 1,
2 or 3.

Allocation : Tbl::set etat qcq()

Allocation to zero : Tbl::annule hard()

Reading of an element : Tbl::operator()(int ...)

Writing of an element : Tbl::set(int...)

Output : operator cout
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Matrix : Matrice

Constructor : Matrice::Matrice(int, int).

Allocation : Matrice::set etat qcq()

Allocation to zero : Matrice::annule hard()

Reading of an element : Matrice::operator()(int, int)

Writing of an element : Matrice::set(int, int)

Output : operator cout

Allocation of the banded form : Matrice::set(int up, int
down)

Computes the LU decomposition : Matrice::set lu()

Inversion of a system AX = Y : Tbl Matrice::inverse(Tbl y).
The LU decomposition must be done before.

Introduction One-domain methods Multi-domain methods Some LORENE objects

Tuesday directory

What it provides

Routines to computes collocation points, weights, and coefficients
(using Tbl).

For Chebyshev (cheby.h and cheby.C)

For Legendre (leg.h and leg.C)

The action of the second derivative in Chebyshev space (solver.C)

What should I do ?

Go to Lorene/School05 directory.

type cvs update -d to get todays files.

compile solver (using make).

run it ... (disappointing isnt’it ?).

write what is missing.
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I. A TEST PROBLEM

We propose to solve a simple 1D problem, using a single domain. Let us consider the following equation:

u′′ − 4u′ + 4u = exp (x) + C ; x ∈ [−1; 1] ; C = − 4e
1 + e2

. (1)

For the boundary conditions, we adopt :

u (−1) = 0 and u (1) = 0. (2)

Under those conditions, the solution of the problem is

u (x) = exp (x)− sinh 1
sinh 2

exp (2x) +
C

4
. (3)

II. SUGGESTED STEPS

• Construct the matrix representation of the differential operator.

• Solve the equation using one or more of usual methods : Tau, collocation and Galerkin.

• Check whether the methods are optimal or not.

III. DISCONTINUOUS SOURCE

Let us consider the following problem :

−u′′ + 4u = S ; x ∈ [−1; 1] (4)
u (−1) = 0 ; u (1) = 0 (5)

S (x < 0) = 1 ; S (x > 0) = 0 (6)

The solution is given by :

u (x < 0) =
1
4
−

(
e2

4
+B−e4

)
exp (2x) +B− exp (−2x) (7)

u (x > 0) = B+

(
exp (−2x)− 1

e4
exp (2x)

)
(8)

B− = − 1
8 (1 + e2)

− e2

8 (1 + e4)
(9)

B+ =
e4

8

(
e2

(1 + e4)
− 1

(1 + e2)

)
(10)

IV. SUGGESTED STEPS

• Verify that Gibbs phenomenon appear when using a single domain method.

• Implement one or more if the multi-domain solvers (Tau, Homogeneous solutions or variationnal).

• Check that exponential convergence to the solution is recovered.
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CNRS / Observatoire de Paris, France

in collaboration with
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Motivations and history

The numerical library Lorene (for Langage Objet
pour la RElativité NumériquE) was initiated in 1997
by Jean-Alain Marck who, after realizing that the
FORTRAN programming language the group has been
using until then, was no longer adapted to the
growing complexity of the numerical relativity codes.

Lorene is of course :

a modular library written in C++,
a collaborative effort (over 20 contributors),
many users across the world,
many published results in numerical relativity ...

thanks to :

the cvs repository,
fully-documented sources available on the web page
http ://www.lorene.obspm.fr,
a great effort to achieve portability across various systems /
compilers.

Lorene
presentation
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Common features for many classes

Most of classes (object types) in Lorene share some common
functionalities :

protected data, with readonly accessors often called .get XXX
and read/write accessors .set XXX,

an overload of the “<<” operator to display objects,

a method for saving data into files and a constructor from a file,

for container-like objects (arrays, fields...) a state (etat in
French) flag indicating whether memory has been allocated :

ETATQCQ : ordinary state, memory allocated ⇒set etat qcq() ;
ETATZERO : null state, memory not allocated
⇒set etat zero() ;
ETATNONDEF : undefined state, memory not allocated
⇒set etat nondef() ;
+ a method annule hard() to fill with 0s ;

external arithmetic operators (+, -, *, /) and mathematical
functions (sin, exp, sqrt, abs, max, ...).
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3D spherical polar coordinates

In almost all cases, fields are
represented using 3D spherical
coordinates r, θ, ϕ and a
spherical-like grid :

stars and black holes have
spherical shapes,

astrophysical systems are
isolated : boundary
conditions are defined for
r →∞
although spherical
coordinates are singular
(origin, z-axis), surfaces r =
constant are smooth.

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ,
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Regularity at the origin

Let f(x, y, z) be an analytic function, it can be expanded near the
origin in terms of Taylor series :

f(x, y, z) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

cijkxiyjzk.

Changing the coordinates to spherical ones and after some amount
of calculations and recasting cos ϕ and sin ϕ in eiϕ :

f(r, θ, ϕ) =
∞∑

`=0

∑̀
m=−`

r`
∞∑
i=0

ai`mr2iY m
` (θ, ϕ).

Here Y`(θ, ϕ) = Pm
` (cos(θ)) eimϕ are the spherical harmonics with

Pm
` (cos(θ)) being an associated Legendre polynomial in cos θ.
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Spectral bases

f(r, θ, ϕ)

↙ ↘
` even

Radial base θ base ϕ base

Even Chebyshev Even Fourier Fourier

Even Chebyshev Even Legendre Fourier

` odd
Radial base θ base ϕ base

Odd Chebyshev Odd Fourier Fourier

Odd Chebyshev Odd Legendre Fourier

Fourier series in θ ⇒computation of derivatives or 1/ sin θ
operators ;

associated Legendre polynomial in cos θ ⇒spherical harmonics
⇒computation of the angular Laplace operator

∆θϕ ≡
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

and inversion of the Laplace or d’Alembert operators.

Lorene
presentation

Jérôme Novak

Introduction

History

General points

Regularity

Spherical
coordinates

Analicity

Spectral bases

Symmetries

Spectral
representation in
Lorene

Mg3d

Multigrid arrays

Base val and
Valeur

Mappings

Scalar field
implementation

Important
methods

dzpuis flag

Finite part

Diff

Vector fields

Additional symmetries can be taken into account :

the θ-symmetry : symmetry with respect to the equatorial plane
(z = 0) ;

the ϕ-symmetry : invariance under the (x, y) 7→ (−x,−y)
transform.

When required, only the angular functions which satisfy these
symmetries are used for the decomposition and the grid is reduced in
size.
The regularity condition on the z-axis is automatically taken into
account by the spherical harmonics basis.
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Spectral representation in Lorene
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Mg3d

Multi-domain grid of collocation points on
which the functions are evaluated to compute
the spectral coefficients. It takes into account
symmetries.

In each domain, the radial variable used is ξ ∈ [−1, 1], or ∈ [0, 1] for
the nucleus.
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Multigrid arrays

The class Mtbl stores values of a function
on grid points ; it depends on a
multi-domain grid of type Mg3d and is
merely a collection of 3D arrays Tbl.

The class Mtbl cf stores spectral
coefficients of a function ; it has two more
elements than the corresponding Mtbl in
the ϕ-direction.
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Base val and Valeur

The class Base val contains information
about the spectral bases used in each
domain to transform from the function
values on the grid points (Mtbl) to the
spectral coefficients (Mtbl cf).

The class Valeur gathers a Mtbl, a
Mtbl cf and the Base val to pass from
one to the other.

An object of type Valeur can be initialized through its Mtbl
(physical space) ; the coefficients can then be computed using the
method coef() or ylm() for Fourier or spherical harmonics angular
bases. The inverse methods are coef i() and ylm i().
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Mappings
Class Map af

A mapping relates, in each domain, the
numerical grid coordinates (ξ, θ′, ϕ′) to the
physical ones (r, θ, ϕ).

The simplest class is Map af for which the relation between ξ and r
is linear (nucleus + shells) or inverse (CED).
To a mapping are attached coordinate fields Coord :
r, θ, ϕ, x, y, z, cos θ, · · · ; vector orthogonal triads and flat metrics.
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Scalar fields
Class Scalar

The class Scalar gathers a Valeur and a
mapping, it represents a scalar field defined on
the spectral grid, or a component of a
vector/tensor.

A way to construct a Scalar is to

1 use the standard constructor, which needs a mapping ; the
associated Valeur being then constructed in an undefined state
(ETATNONDEF ;

2 assign it an expression using Coords : e.g. x*y + exp(z).
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Jérôme Novak

Introduction

History

General points

Regularity

Spherical
coordinates

Analicity

Spectral bases

Symmetries

Spectral
representation in
Lorene

Mg3d

Multigrid arrays

Base val and
Valeur

Mappings

Scalar field
implementation

Important
methods

dzpuis flag

Finite part

Diff

Vector fields

Important methods of the class Scalar

Accessors and modifier of the Valeur

get spectral va() readonly

set spectral va() read/write ; it can be used to compute
spectral coefficients, or to access directly to the coefficients
(Mtbl cf).

Spectral base manipulation

std spectral base() sets the standard spectral base for a
scalar field ;

std spectral base odd() sets the spectral base for the radial
derivative of a scalar field ;

get spectral base() returns the Base val of the considered
Scalar ;

set spectral base(Base val) sets a given Base val as the
spectral base.
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Jérôme Novak

Introduction

History

General points

Regularity

Spherical
coordinates

Analicity

Spectral bases

Symmetries

Spectral
representation in
Lorene

Mg3d

Multigrid arrays

Base val and
Valeur

Mappings

Scalar field
implementation

Important
methods

dzpuis flag

Finite part

Diff

Vector fields

Important methods of the class Scalar

Accessors and modifier of values in a given domain

domain(int) reading ;

set domain(int) modifying ; it can be used to change the
values in the physical space in one domain only.

Accessors and modifier of values of a grid point

val grid point(int, int, int, int) readonly in the
physical space ;

set grid point(int, int, int, int) read/write in the
physical space, but should be used with caution, read carefully
the documentation.
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The dzpuis flag

In the compactified external domain (CED), the variable u = 1/r is
used (up to a factor α). ⇒when computing the radial derivative (i.e.
using the method dsdr()) of a field f , one gets

∂f

∂u
= −r2 ∂f

∂r
.

For the inversion Laplace operator, since

∆r = u4∆u,

it is interesting to have the source multiplied by r4 in the CED.
⇒use of an integer flag dzpuis for a scalar field f , which means that
in the CED, one does not have f , but

rdzpuisf

stored.
For instance, if f is constant equal to one in the CED, but with a

dzpuis set to 4, it means that f = 1/r4 in the CED.
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Regular operators and finite part

An operator like 1/r2 is singular, in general, at the origin.
Nevertheless, when it appears within e.g. the Laplace operator

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆θϕ

it should give regular results, when applied to a regular field.
⇒parity + r` behavior near the origin ensure that everything is well
behaved...in theory !
In practice, numerical errors can make things diverge if the division
by r is performed in the physical space.
⇒these kind of operators are evaluated in the coefficient space,
resulting in

1

r
↔ f(r)− f(0)

r
.
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Operator matrices

All radial operators can be seen, in a given domain, as a matrix
multiplication on the vector of Chebyshev coefficients.
The class Diff and its derived classes can give directly this matrix :

there is a different type for each operator

for example, the second derivative is Diff dsdx2

standard constructors for all these classes need the number of
coefficients and the type of spectral base :

Diff dsdx2 op(17, R CHEBP) ;
const Matrice mat op = op.get matrice() ;

Note that this gives the operator with respect to the ξ coordinate...
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Jérôme Novak

Introduction

History

General points

Regularity

Spherical
coordinates

Analicity

Spectral bases

Symmetries

Spectral
representation in
Lorene

Mg3d

Multigrid arrays

Base val and
Valeur

Mappings

Scalar field
implementation

Important
methods

dzpuis flag

Finite part

Diff

Vector fields

Vector fields

Lorene can handle a vector field V (class Vector) expressed in
either of two types of components (i.e. using two orthonormal triads,
of type Base vect) :

the spherical triad (Vr, Vθ, Vϕ) get bvect spher(),

the Cartesian triad (Vx, Vy, Vz) get bvect cart().

Note that the choice of triad is independent from that of
coordinates : one can use Vy(r, θ, ϕ).

The Cartesian components of a regular vector field in spherical
coordinates follow the same rules that a regular scalar field,
except for symmetries ;

The spherical components have more complicated rules since the
spherical triad is singular (additional singularity).

⇒two ways of defining a regular vector field in spherical
components :

define it in Cartesian components and then rotate it (method
change triad(Base vect)), or

define it as a gradient of a regular scalar field.
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CNRS / Observatoire de Paris

F-92195 Meudon, France

eric.gourgoulhon@obspm.fr

based on a collaboration with
Philippe Grandclément & Jérôme Novak
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General features of tensor calculus in Lorene

Tensor calculus on a 3-dimensional manifold only (3+1 formalism of general
relativity)

Main class: Tensor : stores tensor components with respect to a given triad
and not abstract tensors

Different metrics can be used at the same time (class Metric), with their
associated covariant derivatives

Covariant derivatives can be defined irrespectively of any metric (class
Connection)

Dynamical gestion of dependencies guaranties that all quantities are up to
date, being recomputed only if necessary
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Class Base vect (triads)

The triads are decribed by the Lorene class: Base vect; most of the time,
orthonormal triads are used. Two triads are naturally provided, in relation to the
coordinates (r, θ, ϕ) (described by the class Map):

(ex, ey, ez) =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
(class Base vect cart)

(er, eθ, eϕ) =

(
∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂ϕ

)
(class Base vect spher)

Notice that both triads are orthonormal with respect to the flat metric metric
fij = diag(1, 1, 1).
Given a coordinate system, described by a mapping (class Map), they are
obtainable respectively by the methods

Map::get bvect cart()

Map::get bvect spher()
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Class Tensor (tensorial fields)

Conventions: the indices of the tensor components, vary between 1 and 3.
In the example T i

jk, the first index i is called index no. 0, the second index j is
called index no. 1, etc...
The covariance type of the indices is indicated by an integer which takes two
values, defined in file tensor.h:

COV : covariant index

CON : contravariant index

The covariance types are stored in an array of integers (Lorene class Itbl) of
size the tensor valence. For T i

jk, the Itbl, tipe say, has a size of 3 and is such
that

tipe(0) = CON

tipe(1) = COV

tipe(2) = COV
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An example of code

This code is available as
Lorene/School05/Wednesday/demo tensor.C
in the Lorene distribution

// C headers
#include <stdlib.h>
#include <assert.h>
#include <math.h>

// Lorene headers
#include "headcpp.h" // standard input/output C++ headers

// (iostream, fstream)
#include "metric.h" // classes Metric, Tensor, etc...
#include "nbr_spx.h" // defines __infinity as an ordinary number
#include "graphique.h" // for graphical outputs
#include "utilitaires.h" // utilities

int main() {
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// Setup of a multi-domain grid (Lorene class Mg3d)
// ------------------------------------------------
int nz = 3 ; // Number of domains
int nr = 17 ; // Number of collocation points in r in each domain
int nt = 9 ; // Number of collocation points in theta in each domain
int np = 8 ; // Number of collocation points in phi in each domain
int symmetry_theta = SYM ; // symmetry with respect to the

// equatorial plane
int symmetry_phi = NONSYM ; // no symmetry in phi
bool compact = true ; // external domain is compactified

// Multi-domain grid construction:
Mg3d mgrid(nz, nr, nt, np, symmetry_theta, symmetry_phi,

compact) ;

cout << mgrid << endl ;
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// Setup of an affine mapping : grid --> physical space
// (Lorene class Map_af)
//-----------------------------------------------------

// radial boundaries of each domain:
double r_limits[] = {0., 1., 2., __infinity} ;

Map_af map(mgrid, r_limits) ; // Mapping construction

cout << map << endl ;

// Coordinates associated with the mapping:

const Coord& r = map.r ;
const Coord& x = map.x ;
const Coord& y = map.y ;
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// Some scalar field to be used as a conformal factor
// --------------------------------------------------

Scalar psi4(map) ;

psi4 = 1 + 5*x*y*exp(-r*r) ;

psi4.set_outer_boundary(nz-1, 1.) ; // 1 at spatial infinity
// (instead of NaN !)

psi4.std_spectral_base() ; // Standard polynomial bases
// will be used to perform the
// spectral expansions
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// Graphical outputs:
// -----------------

// 1D view via PGPLOT
des_profile(psi4, 0., 4., 1, M_PI/4, M_PI/4, "r", "\\gq\\u4") ;

// 2D view of the slice z=0 via PGPLOT
des_coupe_z(psi4, 0., -3., 3., -3., 3., "\\gq\\u4") ;

// 3D view of the same slice via OpenDX
psi4.visu_section(’z’, 0., -3., 3., -3., 3.) ;

cout << "Coefficients of the spectral expansion of Psi^4:"
<< endl ;

psi4.spectral_display() ;

arrete() ; // pause (waiting for return)
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// Components of the flat metric in an orthonormal
// spherical frame :

Sym_tensor fij(map, COV, map.get_bvect_spher()) ;
fij.set(1,1) = 1 ;
fij.set(1,2) = 0 ;
fij.set(1,3) = 0 ;
fij.set(2,2) = 1 ;
fij.set(2,3) = 0 ;
fij.set(3,3) = 1 ;

fij.std_spectral_base() ; // Standard polynomial bases will
// be used to perform the spectral expansions

// Components of the physical metric in an orthonormal
// spherical frame :

Sym_tensor gij = psi4 * fij ;
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// Construction of the metric from the covariant components:

Metric gam(gij) ;

// Construction of a Vector : V^i = D^i Psi^4 = (Psi^4)^{;i}

Vector vv = psi4.derive_con(gam) ; // this is spherical comp.
// (same triad as gam)

vv.dec_dzpuis(2) ; // the dzpuis flag (power of r in the CED)
// is set to 0 (= 2 - 2)

// Cartesian components of the vector :
Vector vv_cart = vv ;
vv_cart.change_triad( map.get_bvect_cart() ) ;

// Plot of the vector field :

des_coupe_vect_z(vv_cart, 0., -4., 1., -2., 2., -2., 2.,
"Vector V") ;
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// A symmetric tensor of valence 2 : the Ricci tensor
// associated with the metric gam :
//---------------------------------------------------

Sym_tensor tens1 = gam.ricci() ;

const Sym_tensor& tens2 = gam.ricci() ; // same as before except
// that no memory is allocated for a
// new tensor: tens2 is merely a
// non-modifiable reference to the
// Ricci tensor of gam

// Plot of tens1

des_meridian(tens1, 0., 4.,"Ricci (x r\\u3\\d in last domain)",
10) ;
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// Another valence 2 tensor : the covariant derivative of V
// with respect to the metric gam :
//---------------------------------------------------------
Tensor tens3 = vv.derive_cov(gam) ;

const Tensor& tens4 = vv.derive_cov(gam) ;

// the reference tens4 is preferable over the new object tens3
// if you do not intend to modify tens4 or vv, because it does
// not perform any memory allocation for a tensor.

// Raising an index with the metric gam :

Tensor tens5 = tens3.up(1, gam) ; // 1 = second index (index j
// in the covariant derivative V^i_{;j})

Tensor diff1 = tens5 - vv.derive_con(gam) ; // this should be 0

// Check:
cout << "Maximum value of diff1 in each domain : " << endl ;
Tbl tdiff1 = max(diff1) ;
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// Another valence 2 tensor : the Lie derivative
// of R_{ij} along V :

Sym_tensor tens6 = tens1.derive_lie(vv) ;

// Contracting two tensors :

Tensor tens7 = contract(tens1, 1, tens5, 0) ; // contracting
// the last index of tens1 with the
// first one of tens5

// self contraction of a tensor :

Scalar scal1 = contract(tens3, 0, 1) ; // 0 = first index,
// 1 = second index
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// Each of these fields should be zero:

Scalar diff2 = scal1 - vv.divergence(gam) ; // divergence

Scalar diff3 = scal1 - tens3.trace() ; // trace

// Check :
cout << "Maximum value of diff2 in each domain : "

<< max(abs(diff2)) << endl ;

cout << "Maximum value of diff3 in each domain : "
<< max(abs(diff3)) << endl ;

arrete() ;
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// Tensorial product :

Tensor_sym tens8 = tens1 * tens3 ; // tens1 = R_{ij}
// tens3 = V^k_{;l}
// tens8
// = (T8)_{ij}^k_l
// = R_ij V^k_{;l}

cout << "Valence of tens8 : " << tens8.get_valence()
<< endl ;

cout <<
"Spectral coefficients of the component (2,3,1,1) of tens8:"

<< endl ;

tens8(2,3,1,1).spectral_display() ;
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////////////////////////////////////////////////////
// //
// To see more functions, please have a look to //
// Lorene documentation at //
// http://www.lorene.obspm.fr/Refguide/ //
// //
////////////////////////////////////////////////////

return EXIT_SUCCESS ;

}
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I. FIELD MANIPULATION WITH LORENE

The aim is simply to get used to Lorene library for the definition, manipulation, computation and drawing of
scalar and vector fields in spherical coordinates and/or components. For all classes and functions, please look carefully
at the documentation at Lorene/Doc/refguide/index.html.

• Setup a multi-domain three-dimensional grid. It should contain a nucleus, one or more shells and a compactified
external domain. Take it to be symmetric / equatorial plane and not symmetric / (x, y)→ (−x,−y).

• Using coordinate fields (Coord objects, members of the mapping), define a regular 3D (but symmetric / equatorial
plane) scalar field of type Scalar.

• After setting the spectral base, draw iso-contours with des coupe ... and profiles with des meridian.

• Compute the radial derivative of the field and compare it to the “analytic” value (e.g. using maxabs or
diffrelmax).

• Define a regular vector field in spherical triad, either by setting it first in a Cartesian triad and changing the
triad, or as the gradient of a scalar field (covariant derivative / flat metric). Draw the vector field.

II. TEST OF A ROTATING BLACK HOLE METRIC

With tensor calculus tools, it is easy to check whether a given metric is solution of Einstein equations. As an
example, the Kerr-Schild metric shall be tested, within the framework of the 3+1 formalism. This metric provides a
description of a rotating black hole (i.e. vacuum space-time), with a mass M and the angular momentum per unit
mass a:

gµν = fµν + 2Hlµlν ; (1)

where fµν is the flat metric,

H =
Mρ3

ρ4 + a2z2
(2)

and

lµ =
(

1,
ρx+ ay

ρ2 + a2
,
ρy − ax
ρ2 + a2

,
z

ρ

)
. (3)

Note that the spatial components of lµ are expressed in a Cartesian triad and ρ is related to the usual radial coordinate
r – (x, y, z) being the usual Cartesian coordinates – by the relation:

ρ2 =
1
2

(
r2 − a2

)
+

√
1
4

(r2 − a2)2 + a2z2. (4)

To test it, the metric should be written in the 3+1 form1 (using only 3-tensors):

gµν dx
µ dxν = −N2dt2 + γij(dxi + βidt)(dxj + βjdt); (5)

with N being the lapse, β the shift and γij the 3-metric. In this case:

N =
1√

1 + 2H
;

βi = 2Hli;
γij = fij + 2Hlilj

1 latin indices range from 1 to 3 (only spatial components), whereas greek ones range from 0 to 3



2

One also defines the extrinsic curvature

Kij =
1

2N

(
£βγij −

∂

∂t
γij

)
(6)

£βγij being the Lie-derivative along the shift of the 3-metric.
The ten Einstein equations write (in vacuum):

• the Hamiltonian constraint equation:

R+K2 −KijK
ij = 0, (7)

• the three momentum constraint equations

DjK
j

i −DiK = 0, (8)

• and the six dynamical evolution equations

∂

∂t
Kij −£βKij = −DiDjN +N

[
Rij − 2KikK

k
j +KKij

]
. (9)

Di is the covariant derivative / γij , K the trace of Kij , Rij and R the Ricci tensor and scalar associated with
this 3-metric.

III. SUGGESTED STEPS

• Define a grid (symmetric / (x, y) → (−x,−y) transform), with at least 4 points in ϕ to be able to rotate from
Cartesian triad to the spherical one. Either this grid is without the nucleus, to excise the black hole singularity,
or all fields should be set to 0 or 1 in the nucleus to discard the divergence near the centre. Define a mapping
on that grid.

• Setup the Kerr-Schild metric described above, with the lapse, shift and the 3-metric.

• Verify that the 1+3+6 equations above are satisfied, using the appropriate methods of classes Tensor, Vector
and Metric. Be very careful with the dzpuis flag!
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INTRODUCTION

Introduction Yang-Mills-Higgs monopole The Param elliptic class

Type of problems

We have to solve a set of k partial differential equations, coupled :

Hifi = Si (f1, f2....fk) ∀0 ≤ i < k

where Hi are differential operators (typically second order...)

Iteration technique

Give an initial guess for the fi.

Computes the sources.

Invert the operators Hi.

If the relative change in the fi is small stop, else compute the new
sources and loop.
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A few questions

Choice of Hi and fi

The choice of operators and functions can greatly influence the
stability and convergence of the code.

Typically, it is best if Si contains only quadratic terms (or even
higher order) in fk.

Relaxation

If we replace simple fi par H−1
i [Si] the code usually diverges.

We slow the change from step to step by using relaxation like :

fnew
i = λH−1

i [Si] + (1− λ) fold
i

Typical values : λ ≈ 0.5.

Introduction Yang-Mills-Higgs monopole The Param elliptic class

Influence of relaxation
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Hi : simple cases

In LORENE a lot of choices are implemented for the operators Hi.

Members of Scalar :

First order : primitive primr.

Standard Poisson : poisson and poisson tau.

Poisson with inner boundary conditions : poisson dirichlet,
poisson neumann, poisson dir neum.

Angular part : poisson angu.

The vectorial counterpart do also exist, members of Vector.
However, we may want to change Hi and fi from domains to domains :
need a more general solver...
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YANG-MILLS-HIGGS MONOPOLE
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The equations

Monopoles are stationary, localized solutions of finite energy, in certain
theories. Such solutions, in Yang-Mills-Higgs, assuming spherical
symmetry, are solutions of a set of two equations :

W ′′ =
W

(
W 2 − 1

)
r2

+ WH2

H ′′ +
2

r
H ′ = 2

W 2H

r2
+

β2

2
H

(
H2 − 1

)
where W describe the gauge field, H the Higgs field, and β is a
parameter giving the ratio of the masses.
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Typical solutions
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Asymptotic behavior

Near the origin :

W = 1− ar2 +O
(
r4

)
H = br +O

(
r3

)
At infinity

W goes to zero exponentially.

H goes to 1 exponentially.

Introduction Yang-Mills-Higgs monopole The Param elliptic class

Why not use Poisson operators ?

Suppose we write the system in the following form :

∆W = SW (W,H)

∆H = SH (W,H)

If we do not start from THE solution, after the first step,
homogeneous solutions of the Laplacian do appear.

Those homogeneous solutions are in 1/r and do not decay fast
enough for the sources.

the code crashed very quickly.

One needs to maintain exponential convergence throughout the iteration.
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Equations near infinity

In the CED, one will work with W and h = H − 1.
One can make Helmholtz operators appear :

∆l=0W −W = hW (h + 2) +
W

(
W 2 − 1

)
r2

+ 2
W ′

r

∆l=0h− β2h = 2
W 2 (h + 1)

r2
+

β2

2
h2 (h + 3)

Homogeneous solutions are exponentials =⇒ exponential convergence is
maintained during the iteration.
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Near the origin

One can see that W = 0 everywhere is solution of the system of
equations.

One should prevent the code to converge to W = 0.

Near the origin, one can use :

w =
W − 1

r

Given that : W = 1− ar2 +O
(
r4

)
w is regular at the origin.

w is odd near the origin.

It forces W (r = 0) = 1.
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Equations near the origin

In the nucleus, one will work with w and H.
The equations can be put in the following form :

∆l=1w ≡ w′′ +
2

r
w′ − 2

w

r2
= w3 + 3

w2

r
+ (1 + rw)

H2

r

∆l=1H ≡ H ′′ +
2

r
H ′ − 2

H

r2
= 2H

(
w2 + 2

w

r

)
+

β2

2
H

(
H2 − 1

)
.
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Equations in the shells

Neither of the functions are singular.
We can use W and H and write the equations like :

∆l=0W −W = W
(
H2 − 1

)
+

W
(
W 2 − 1

)
r2

+ 2
W ′

r

∆l=0H − β2H = 2
W 2H

r2
+

β2

2
H

(
H2 − 3

)
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THE Param elliptic CLASS

Introduction Yang-Mills-Higgs monopole The Param elliptic class

So what is needed ?

We need to solve equations of the type : Hdfd = Sd where d denotes the
domain

Hd can be different operators in each domain.

fd are auxiliary variables, related to the ”real” one F .

The auxiliary variables can be different from domain to domain.

The continuous function is F .

Use the Param elliptic object

constructor : Param elliptic(const Scalar & so)

various functions to initialize the Param elliptic, setting both

the Hd

the variable changes.

Solve the equation by calling Scalar::sol elliptic
(Param elliptic)

It returns a Scalar containing fd.
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Setting the variable change

For now the auxiliary variables should be of the type :

W = F (r, θ, ϕ) + G (r) w

F and G are given in every domain

By default F = 0 and G = 1

F is changed by Param elliptic::set variable F (const
Scalar &)

G is changed by Param elliptic::set variable G (const
Scalar &).

Be careful : the code does not check that G is only a function of r
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Monopole variable change

For W

In the nucleus : W = 1 + rw

W elsewhere.

For H

In the CED : H = 1 + h

H elsewhere.

They are of the right type
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Changing the operators

Use the provided member functions of Param elliptic like :

set helmholtz minus (int zone, double m, Scalar &so)

sets the operator to ∆−m2 in the domain zone.

inc l quant (int zone)

increases l in the domain zone, the operator being of the type :

f ′′ +
2

r
f ′ − l (l + 1)

r2
f
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I. THE PROBLEM

We propose to solve the system for a static spherically symmetric Yang-Mills-Higgs monopole. Using the minimal
spherically symmetric Ansatz, the solution is described by two functions : one describing the gauge field W and one
the Higgs field H. Those two functions depend only on r and obey a system of two coupled equations :

W ′′ =
W

(
W 2 − 1

)

r2
+WH2 (1)

H ′′ +
2
r
H ′ = 2

W 2H

r2
+
β2

2
H

(
H2 − 1

)
(2)

The only parameter of the solution is β constraining the mass of the Higgs field. We will restrict ourselves to the
cases 0 < β <∞.

II. ASYMPTOTIC BEHAVIORS

Near the origin, one has the following behaviors :

W = 1− ar2 +O (
r4

)
(3)

H = br +O (
r3

)
(4)

At infinity, the fields converge exponentially, i.e. W and h = H − 1 go to zero exponentially.

III. SYSTEM IN VARIOUS DOMAINS

• In the nucleus : one uses w =
W − 1
r

and H (odd functions near the origin) and rewrite the system as :

∆l=1w ≡ w′′ + 2
r
w′ − 2

w

r2
= w3 + 3

w2

r
+ (1 + rw)

H2

r
(5)

∆l=1H ≡ H ′′ + 2
r
H ′ − 2

H

r2
= 2H

(
w2 + 2

w

r

)
+
β2

2
H

(
H2 − 1

)
. (6)

• In the shells : one uses W and H but rewrites the system to make the Helmholtz operators appear (optional) :

∆l=0W −W = W
(
H2 − 1

)
+
W

(
W 2 − 1

)

r2
+ 2

W ′

r
(7)

∆l=0H − β2H = 2
W 2H

r2
+
β2

2
H

(
H2 − 3

)
(8)

• In the external domain : one works with W and h = H − 1 and make Helmholtz operators appear :

∆l=0W −W = hW (h+ 2) +
W

(
W 2 − 1

)

r2
+ 2

W ′

r
(9)

∆l=0h− β2h = 2
W 2 (h+ 1)

r2
+
β2

2
h2 (h+ 3) (10)

IV. SUGGESTED STEPS

• Look at the proposed Monopole class that contains W , H, w and h (each of them being a Scalar).

• Implement functions that initialize W and H, with the right behaviors and basis. Plot the results.

• Implement functions that go from W to w and from H to h and conversely. Plot the various functions.



2

• Compute the sources in various domains and plot them.

• Setup the main iteration loop, based on Param elliptic class.

• For various moderate values of β, compute a and b appearing in Eqs. (3) and (4).

• Try to go to high values of β.

V. SOLVING THE SYSTEM ON TWO GRIDS

For high values of β, one can show that H varies on a relative length scale ∝ 1/β whereas W varies always on
length of the order unity. So, for high values of β, those two functions vary on very different length scales, causing
the code to crash. To cope with that, one can use two grids :

• one on scales of the order 1, used to solve the equation for W .

• one on scales of the order 1/β, used to solve the equation for H

This can be implemented by describing all the fields (W , w, H and h) on two sets of grids. One can go from one
grid to the other by using the Scalar::import() function. Be careful : this should only be used with continuous
functions, to avoid Gibbs phenomenon. Verify that the use of two grids enables to go to very high values of β.



Singular elliptical operators

................................ by

———– S. BONAZZOLA

L.U.T.H Oservatoire Paris Meudon

In problems involving one (or more Black Holes
(B.H.) when the excision technique is used, we
can have to handle degenerate elliptical opera-
tors.
An example, is the equation for the shift βi

when the lapse N vanishes on the horizon. In
fact the equation for the shift reads (in an apropi-
ate gauge)

∇jKij = 0 (1)

where K ij is the extrinsic curvature tensor

Kij =
1

2N
(∇iβj +∇jβi − ∂0γij) (2)

1



Here in after we shall express all the differential
operators in terms of the flat covariant deriva-
tive Di computed with respect the flat metric
fik that in spherical coordinates reads 1

f11 = 1, f22 = r2, f33 = r2 sin2 θ (3)

Under the hypothesis that the topology of the
horizon is the topology of the sphere the equa-
tion of the horizon can be reduced to be

r = 1 (4)

Consequently we have to solve the the Einstein
equations in the excised space

1 ≤ r ≤ ∞ (5)

The technique used to solve the Einstein equa-
tions is to solve these equations in two domains

1 ≤ r ≤ 2, 2 ≤ r ≤ ∞ (6)

and to match the solutions and they first deriva-
tives at r = 2
The shift equation(1) can be written

1See the paper by S.Bonazzola et al. Phys.Rev.D 70 (2004), 104007

2



DjDjβi+
1

3
Di(Djβj)−(Diβj+Djβi−2

3
Dlβ

lf ij+Si
1)

∂jN

N
= Si

2

With the B.C. βi = 0 |r=∞. In order to match
the solution and its derivative we must have at
list one homogeneous solution in the domain
1 ≤ r ≤ 2. Question : How many homoge-
neous solutions exist ?
Taking into account that near the horizon

N = (r − 1)N0(r, θ, φ)

we look for the homogeneous solutions of the
equation

DjDjβi−1

3
DiDjβ

i−1

x
(Drβi+Diβr−2

3
Dlβ

lf ir) = 0

where
x = r − 1

The vectorial operator of the above equation, in
spherical coordinates and spherical components

3



is quite messy. By introducing two angular po-
tentials η and µ defined by the equations

βθ = ∂θη −
1

sin θ
∂φµ, βφ = ∂θµ +

1

sin θ
∂φη

we have two coupled Poisson equations for βr

and η and a Poisson equation for µ that after
an expansion in spherical harmonics reads:

d2µ

dr2
+

2

r

dµ

dr
−l(l + 1)

r2
µ−1

x
(
dµ

dr
−µ

r
) = 0, (x = r−1)

A solution µ1 can be found by making a power
expansion

µ1 = x2 − 5

3
x3 + ...

For l = 1 it exists an other homogeneous solu-
tion:

µ2 = r

that means that a black hole can rigidly rotate.
In fact, the non vanishing at r = 1 hmogenous
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solutions are

µ1 = r cos θ, µ2 = r sin θ cos φ, µ3 = r sin θ sin φ
(7)

from wich the corresponding solutions for β

βr = 0, βθ = 0, βφ = r sin θ

βr = 0, βθ = r sin φ, βφ = r cos θ cos φ

βr = 0, βθ = −r cos φ, βφ = r cos θ sin φ

A similar analysis can be performed for the poloy-
dal part βr, η of th shift. The conclusions are:

For l = 1, two couples of homogeneous solu-
tions exist. That means that a rigid translation
of the horizon can be chosen.

For l 6= 1 only βr can be given on the hori-
zon: The horizon can breath.

Finally singular equations exist for the metric
coefficients hik. For some coefficient (hrr) a

5



boundary condition on the horizon can be given,
for other coefficients (hθθ) not.
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Equation 4G + 1
r−1(k1

d
dr + k2

r )G = 0

Consider the equation

d2G

dr2
+k0

1

r

dG

dr
+

1

r2
(−l(l+1)+kl)G+

1

r − 1
(k1

d

dr
+

k2

r
)G = 0

(8)

For k1 = k2 = 0 the above equation has two
regular solution regular a t r = 0 and at r = ∞
,kl if kl = ((k0 − 1)2 − 1)/4.

g1 = rj, j1 =
1− k0 − (2l + 1)

2
, j2 =

1− k0 + (2l + 1)

2

Note that the two solutions rj1 and rj2 are inte-
ger numbers if k0 is integer to. In this section,
we study the number and the aanalytical prop-
erties of the solution for different values of the
parameter k0, k1, k2.

Case k1 6= 0 and k1 6=| 1 |

Without losses of generality we consider only
the case k2 = 0. In fact by putting Ḡ = Grk2/k1
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the equation for the new function Ḡ will be
transformed in an equation having k2 = 0
The case | k1 |= 1 was already discussed.

The technique used consists in studying the be-
havior of the solution around the singular point
r = 1. For that we introduce the new variable
x = r − 1. The Eq. 8 writes

d2G

dx2
+k0

dG

dx
+(−l(l+1)+kl)G+

1

x
k1

d

dx
G = 0

(9)
We look for an homogeneous solution H1(x) by
making a series expansion

H1(x) = a0 + a2x
2 + a3x

3 + ...

. The coefficients a0 and a2 must satisfy the
relation

2(1 + k1)a2 + (−l(l + 1) + kl)a0 = 0 (10)

we see that k1 = −1 Tthe pathological case
a0 = 0 and the nonvanishing homogeneous so-
lution does not exist.

8



A second homogeneous solution H2(x) can be
found by searching a solution that vanishes at
x = 0, (r = 1). We put H2(x) = xj we obtain

j(j − 1) + jk1 = 0

from which
j = −k1 + 1 (11)

Therefore H2(x) will be

H2(x) = xj(1 + aj+1x + ...) (12)

where j is given by the Eq.(11) we see that if
k1 < 1 then the solution is regular, moreover if
k1 is integer number k1 ≤ −2 the solution has
a polynomial behavior near the singularity.
Conclusions: If k1 < 2 Then it exist two inde-
pendent homogeneous solutions of the equation
Eq.8

Numerical solution of the homogeneous equa-
tions

9



If a non vanishing solution exists we shall pro-
ceed in the following way take a solution of the
first order differential equation appearing in the
singular term of the Eq.(8):

g0 = r
−k2
k1 (13)

This solution, in general is not a solution of the
the second order equation (8) Introduce g0 in
the Eq.(8) and compute the rest R. Solve the
non homogeneous equation

d2G

dr2
+

k0

r

dG

dr
+

1

r2
(kl−l(l+1))G+

1

x
(k1

d

dr
+

k2

r
)G = −R

(14)

with the Galerkin approximation by using a new
set of function Φn vanishing as x2. We can use
the set of (non orthogonal functions)

Φn = (r − 1)2Tn(r) (15)

Let be gp this particular solution, The homoge-

10



neous H1 solution of the EQ.(8) will be

H1 = gp + g0 (16)

Numerical implementation

In this section I will show how to find numeri-
cally the homogeneouwe see that if k1 < 1 then
the solution is regular, moreover if k1 is integer
number k1 ≤ −2 the solution has a polynomial
behavior near the singularity.
Conclusions: If k1 < 2 Then it exist two inde-
pendent homogeneous solutions of the equation
Eq.8
Numerical solution of the homogeneous equa-
tions

If a non vanishing solution exists we shall pro-
ceed in the following way take a solution of the
first order differential equation appearing in the
singular term of the Eq.(8):

g0 = r
−k2
k1 (17)

11



This solution, in general is not a solution of the
the second order equation (8) Introduce g0 in
the Eq.(8) and compute the rest R. Solve the
non homogeneous equation

d2G

dr2
+

k0

r

dG

dr
+

1

r2
(kl−l(l+1))G+

1

x
(k1

d

dr
+

k2

r
)G = −R

(18)

with the Galerkin approximation by using a new
set of function Φn vanishing as x2. We can use
the set of (non orthogonal functions)

Φn = (r − 1)2Tn(r) (19)

Let be gp this particular solution, The homoge-
neous H1 solution of the EQ.(refeqg) will be

H1 = gp + g0 (20)

Numerical implementation

In this section I will show how to find numeri-
cally the hogeneos solutions. We shall consider

12



the solution H2 that vanishes at r = 1

Let be Oj
i the matrix of the operator of the

equation Eq.(9)

O = r2 d2

dr2
+r

d

dr
+kl− l(l+1)+

r

x
(rk1

d

dr
+k2)

(21)
with respect the Galerkin basis

Φn(r) = (r − 1)2Tn(r)

Finding H2 it means to find the coefficients an

of the expansion

H2(r) =
∑

anΦn(r)

Consequently we have to find a non trivial so-
lution of the algebraic system of equations

Oj
i aj = 0 (22)

A such a solution exists because the determi-
nant of the matrix Oj

i vanishes. We shall re-
place the last line of the system (22) by

Oj
N = 1, 0, 0, ...

13



and we impose that the first coefficient a1=1
the system will look as

O1
1 a1 +O2

1 a2 +O3
1 a3 + .... = 0

O1
2 a1 +O2

2 a2 +O3
2 a3 + .... = 0

..................................... = 0

a1 + 0 + 0 + 0 + 0 + 0 + ..... = 1

Solution of the inhomogeneos equations
(The pathological case)

We shall consider the solution of the thoroidal
component of the shift:

r2d
2µ

dr2
+2r

dµ

dr
−l(l+1)µ+

r2

x
(−dµ

dr
+

µ

r
+S1) = r2S2

(23)
(x = r − 1) The case k1 = −1 is pathological,
because it exists a non vanishing homogeneous
soluttion at r = 1 only for l = 1. In order to
handle the singular term S1/x we define a new

14



function
S̃1 = S1(r)− q

where q = S1(1). Thus function vanishes at
r = 1 an we re=writw the above equation as

r2d
2µ

dr2
+2r

dµ

dr
−l(l+1)µ+

r2

x
(−dµ

dr
+

µ

r
+q) = r2(S2+

S̃1

x
)

(24)
We look for a solution µ̃ such thta

µ̃ = −qx + F (r)

where Fr vanishes as x2 at r = 1. By replacing
µ̃ we have

r2d
2F

dr2
+2r

dF

dr
−l(l+1)F +

r2

x
(−dF

dr
+

F

r
) (25)

= r2[S2 +
S̃1

x
− q(3r − l(l + 1)x] (26)

and the solution is obtained by expanding F on
the Galerkin base as was done beore.

and the solution is obtained by expanding F
on the Galerkin base as was done before. 2

2Note that if a regular solution is required, the source must vanishes atr = 1

15



Finding Kerr solution startinf from nothing

We show how construct an apprxomitatd Kerr
solution as an application of the above formal-
ism.

Start frm the flat metric fik.
First step:
Find a solution of the lapse equation

4N = 0

with the B,C. N(1) = 0, N(∞) = 1 This solu-
tion can be

N(r) = 1− 1

r
Second step:
Find a solution of the linearised eequation for
Ψ4

4Ψ4 = 0

where Ψ is the conformal factor. The solution

16



must satisfy the B.C. of an apparent horizon

dΨ4

dr
= −1 |r=1, Ψ4 = 1 |r=∞

This solution is

Ψ4 =
1

r

3th step: Find (numerically) a solution for µl

with the B.C.

µl = δ1
l µ0 |r=1, µl = 0 |r=∞

where δi
l is the Kronler δ Iterate

Note that th source of µ vanishes at r = 1 at
each iterartion. (See footnote)

Fig. 1) shows the lapse N. Fig.2) shows the
fonction N0 = N/x (in the first domain) Fig.
3) the shift (for different values of θ
The other figures show the convergence of the
iteration.

Conclusion
We have studied the analytical properties of the

17



solutions of singular elliptical P.D.E. Spectral
methods allows to us to compute numerical so-
lutions of singular equations.
As examplese computed the Kerr solution within
the conformally flat approximation. The algo-
rithm has shown to be robust (in the sense that
it converges exponentially without a relaxation
parameter).
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Fig. 1

Fig. 2
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Fig. 3

Fig. 4

20



Fig. 5

Fig. 6
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Jérôme Novak

Time evolution

Time
discretization

Integration
schemes

Integration
schemes

Wave equation

Explicit scheme

Implicit scheme

Boundaries

Outgoing
conditions

Sommerfeld BC

Asymptotics

Enhanced BC

Plan

1 Time evolution and spectral methods
Time discretization
Integration schemes
Integration schemes

2 Wave equation
Explicit scheme
Implicit scheme
Boundaries

3 Absorbing boundary conditions
Sommerfeld BC
General form of the solution
Absorbing BC for l ≤ 2



Wave equation
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Time discretization

It seems that, in general, there is no efficient spectral decomposition
for the time coordinate...
⇒use of finite-differences schemes ! t is discretized (usually) on an
equally-spaced grid, with a times-step δt : UJ = U(J × δt).

dU

dt
= F (U) = L(U) + Q(U)

Study, for different integration schemes of :

stability : ∀n‖Un‖ ≤ CeKt|U0‖, for some δt < δlim,

region of absolute stability : when considering

dU

dt
= λU,

the region in the complex plane for λδt for which ‖Un‖is
bounded for all n,

unconditional stability : if δ is independent from N (level of
spectral truncation).
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One-dimensional study

To use the knowledge of the region of absolute stability, it is
necessary to diagonalize the matrix L and study its eigen-values λi.
In one dimension :

First-order Fourier

For L = d/dx, one finds max |λi| = O (N)

First-order Chebyshev

For L = d/dx, one finds max |λi| = O
(
N2

)
Second-order Fourier

For L = d/dx2, one finds max |λi| = O
(
N2

)
Second-order Chebyshev

For L = d2/dx2, one finds max |λi| = O
(
N4

)
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Time integration schemes
Most popular...

Explicit

first-order Adams-Bashford scheme (a.k.a forward Euler) :

Un+1 = Un + δtF (Un) ,

second-order Adams-Bashford scheme :

Un+1 = Un + δt

[
23

12
F (Un)− 16

12
F

(
Un−1

)
+

5

12
F

(
Un−2

)]
,

Runge-Kutta schemes...

All these exhibit a bounded region of absolute stability
⇒∃K > 0, δt ≤ K/ max |λi| (Courant condition ...).
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Time integration schemes
Most popular...

Implicit

Adams-Moulton :

first-order (a.k.a backward Euler scheme)

Un+1 = Un + δtF
(
Un+1

)
,

second-order (a.k.a. Crank-Nicholson scheme)

Un+1 = Un +
1

2
δt

[
F

(
Un+1

)
+ F (Un)

]
.

Both have an unbounded region of absolute stability in the left
complex half-plane ⇒unconditionally stable schemes.
Higher-order AM schemes have only a bounded region of absolute
stability.

Schemes can be mixed and various source terms can be treated in
different ways (e.g. linear ⇒implicit / non-linear ⇒explicit).
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Wave equation

The three-dimensional wave equation in spherical coordinates :

�φ = − 1

c2

∂2φ

∂t2
+

∂2φ

∂r2
+

2

r

∂φ

∂r
+

1

r2
∆θϕφ = σ;

with

∆θϕ ≡
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

In 1D, it admits two characteristics : ±c : f(ct− x) and f(ct + x).
To be well-posed, the initial-boundary value problem needs :

φ(t = 0) and ∂φ/∂t(t = 0),

a boundary condition at every domain boundary (Dirichlet, von
Neumann, mixed).

Wave equation
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An explicit scheme for the wave

equation

Using a second-order scheme to evaluate the second time derivative

∂2φ

∂t2

∣∣∣∣
t=tJ

=
φJ+1 − 2φJ + φJ−1

δt2
+ O

(
δt4

)
,

one recovers the forward Euler scheme

φJ+1 = 2φJ − φJ−1 + δt2
(
∆φJ + σ

)
+ O(δt4).

Solution of the initial-boundary value problem inside a sphere or
r ≤ R :

initial profiles at t = t0 and t = t1,

∀t > t1, a value for φ(r = R).

With spectral methods using Chebyshev polynomials in r, time-step
limitation is coming from the second radial derivative :

δt2 ≤ K/N4.

Complete 3D problem ⇒regularity conditions at the origin too, for
` > 1.
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Implicit scheme

With the same formula for the second time derivative and the
Crank-Nicholson scheme :[

1− δt2

2
∆

]
φJ+1 = 2φJ − φJ−1 + δt2

(
1

2
∆φJ−1 + σJ

)
.

One must invert the operator 1− 1/2δt2∆ ; one way is :

consider the spectral representation of φ in terms of spherical
harmonics (∆θϕY m

` = −`(` + 1)Y m
` ) ;

solve the ordinary differential equation in r as a simple linear
system, using e.g. the tau method.

⇒one can add boundary and regularity conditions depending on the
multipolar momentum `.
⇒beware of the condition number of the operator matrix !
⇒sometimes regularity is better imposed (stable) using a Galerkin
base.
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Domain boundaries

Contrary to the Laplace operator ∆, the d’Alembert one � is not
invariant under inversion / sphere.

one cannot a priori use a change of variable u = 1/r !

the distance between two neighboring grid points becomes larger
than the wavelength...

⇒domain of integration bounded (e.g. within a sphere of radius R).

Two types of BCs :

reflecting BC : φ(r = R) = 0,

absorbing BC...
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An absorbing BC can be seen in 1D : at x = 1 one imposes no
incoming characteristic ⇒only f(ct− x) mode.
In spherical 3D geometry : asymptotically, the solution must match

φ ∼r→∞
1

r
f(ct− r),

equivalently,

lim
r→∞

∂(rφ)

∂t
+ c

∂(rφ)

∂t
= 0.

At finite distance R :(
1

c

∂φ

∂t
+

∂φ

∂r
+

φ

r

)∣∣∣∣
r=R

= 0;

which is exact in spherical symmetry.
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General form of the solution

The homogeneous wave equation �φ = 0 admits as asymptotic
development of its solution

φ(t, r, θ, ϕ) =
∞∑

k=1

fk(t− r, θ, ϕ)

rk
.

One can show that the contribution from a mode ` exists only for
k ≤ ` + 1. Moreover, the operators :

B1f =
∂f

∂t
+

∂f

∂r
+

f

r
, Bn+1f =

(
∂

∂t
+

∂

∂r
+

2n + 1

r

)
Bnf

are such that the condition Bnφ = 0 matches the first n terms
(Bnφ = O

(
1/r2n+1

)
). It follows that

Bnφ = 0
is a nth-order BC,
is exact for all modes ` ≤ n− 1,
is asymptotically exact with an error decreasing like 1/Rn+1,
is the generalization of the Sommerfeld BC at finite distance
(n = 1).
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Absorbing BC for l ≤ 2

The condition B3φ = 0 at r = R writes

∀(t, θ, ϕ), B1φ|r=R =

(
∂

∂t
+

∂

∂r
+

1

r

)
φ(t, r, θ, ϕ)

∣∣∣∣
r=R

= ξ(t, θ, ϕ),

with ξ(t, θ, ϕ) verifying a wave-like equation on the sphere r = R

∂2ξ

∂t2
− 3

4R2
∆θϕξ +

3

R

∂ξ

∂t
+

3ξ

2R2
=

1

2R2
∆θϕ

(
φ

R
− ∂φ

∂r

∣∣∣∣
r=R

)
.

easy to solve if ξ is decomposed on the spectral base of spherical
harmonics !

looks like a perturbation of the Sommerfeld BC...

exact for ` ≤ 2 and the error decreases as 1/R4 for other modes.
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I. WAVE EQUATION

The aim is to solve the three-dimensional homogeneous wave equation �φ = 0 in a sphere of radius R, using
spherical coordinates:

1
c2
∂2φ

∂t2
− ∂2φ

∂r2
− 2
r

∂φ

∂r
− ∆θϕφ

r2
= 0. (1)

Here, ∆θϕ is the angular part of the Laplacian. In what follows c = 1 is assumed. There shall be possibly three types
of boundary conditions (BC) to be implemented:

1. Homogeneous BC : φ(r = R) = 0, which models the reflection on the boundary.

2. Sommerfeld BC : ∂(rφ)/∂t+ ∂(rφ)/∂r|r=R = 0, which models a transparent boundary (at least for ` = 0 wave
modes).

3. Enhanced outgoing BC : ∂(rφ)/∂t+ ∂(rφ)/∂r|r=R = ξ(θ, ϕ), which is analogous to the Sommerfeld BC, but is
also transparent to ` = 1, 2 wave modes. The function ξ(θ, ϕ) verifies a wave-like equation on the boundary (see
Sec. VI).

II. EXPLICIT SOLVER

The constant time-step is noted dt and φJ = φ(J × dt), where the spatial coordinates are skipped. The simple
forward Euler scheme writes:

φJ+1 = 2φJ − φJ−1 + dt2∆φJ +O(dt4). (2)

This scheme can be safely used for small time-steps and spherical symmetry (` = 0 only).
Second-order time discretisation of the Sommerfeld BC writes:(

3
2dt

+
1
R

)
φJ+1(R) +

∂φJ+1

∂r

∣∣∣∣
r=R

=
4φJ(R)− φJ−1(R)

2dt
+O(dt2). (3)

III. SUGGESTED STEPS

• Setup a spherically-symmetric one-domain grid (Mg3d, but only nucleus), with a mapping and associated r
coordinate.

• Define an initial profile for φ0 and φ1 ( e.g. the same Gaussian one for both), which should be of type Scalar.

• Make a time loop for 2-3 grid-crossing times with a graphical output (with the function des meridian, see
Lorene documentation).

• Doing so, the problem is ill-posed and therefore unstable. Add the BC requirement (homogeneous or Sommerfeld
BC) by modifying at each time-step the value in physical space of the point situated at r = R, with the method
Scalar::set outer boundary. Note that the initial profile must satisfy the BC!

• Make runs with varying the time-step to see the Courant limitation.

IV. IMPLICIT SOLVER

The 3D extension of the previous approach is very uneasy, it is therefore recommended to used implicit schemes,
namely the Crank-Nicholson one: [

1− dt2

2
∆

]
φJ+1 = 2φJ − φJ−1 dt

2

2
∆φJ−1 (4)

The angular part of the Laplacian ∆θϕ admits spherical harmonics as eigen-functions:

∆θϕY
m
` = −`(`+ 1)Y m` (5)
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so that when developing φ onto spherical harmonics, the operator in (4) becomes

1− dt2

2

(
∂2

∂r2
+

2
r

∂

∂r
− `(`+ 1)

r2

)
(6)

for each harmonic.

V. SUGGESTED STEPS

• Take a symmetric grid (in θ and ϕ), with x and y coordinate fields, to define an ` ≤ 2 initial profile (e.g. xy×
a Gaussian).

• At every time-step after transforming to Y m` , make a loop on `,m (use Base val::give quant numbers to get
` and m) and build the matrix associated with the operator (6), acting on coefficient space, using elementary
operators Diff. Be careful to take into account the mapping!

• Within the same loop on `,m, fill a Tbl with the coefficients of the right-hand side of (4).

• Add the BC and a regularity condition (when necessary) using the tau method.

• Invert the system to get φJ+1, go back to Fourier coefficients and, eventually, compute the energy stored in the
grid:

E =
∫ (

∂φ

∂t

)2

+ (∇φ)2 (7)

using the method Scalar::integrale.

VI. ENHANCED BOUNDARY CONDITIONS

These are a modification of the Sommerfeld BC (Sec. I), with ξ(θ, ϕ) verifying:

∂2ξ

∂t2
− 3

4R2
∆θϕξ +

3
R

∂ξ

∂t
+

3ξ
2R2

=
1

2R2
∆θϕ

(
φ

R
− ∂φ

∂r

∣∣∣∣
r=R

)
; (8)

When developing ξ and φ onto Y m` and using again Crank-Nicholson time scheme:

ξJ+1
`m − 2ξJ`m + ξJ−1

`m

dt2
+

3
8
`(`+ 1)
R2

(
ξJ+1
`m + ξJ−1

`m

)
+

3
R

ξJ+1
`m − ξJ−1

`m

2dt

+
3

4R2

(
ξJ+1
`m + ξJ−1

`m

)
= −`(`+ 1)

2R2

(
φJ`m(R)
R

− ∂φJ`m
∂r

∣∣∣∣
r=R

)
,

one gets a simple numeric linear equation in terms of ξJ+1
`m , which is to be solved at every time-step.

Implement this BC and test it against the Sommerfeld one either by doubling the grid, or by looking at the energy
left inside the grid.
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1 Introduction

This document is intended to give a few references on the way the C++ language works, for
the people attending the school on spectral methods in Meudon in November 2005 and having
no knowledge of this programming language. It is very brief (incomplete!) and deals only with
most basic syntax and notions (classes, derived classes, virtual methods), with a few examples
given in the last section. Interested persons can, of course, consult more complete manuals, like
The C++ Programming Language by the designer of C++ Bjarne Stroustrup, or refer to one of
the many available Web sites, like e.g http://www.cplusplus.com, which is quite useful when
dealing with inputs/outputs (iostream library).

One should not focus too much on the fact that C++ is called an “object-oriented language”.
It is a programming language with function calls and use of variables, which can be of different
types. The notion of class simply gives to the programmer the possibility of defining and intro-
ducing his own types; as well as the associated functions to act and interact with other existing
types.

As general remarks, it is necessary to declare all classes, functions and variables before they
are used or implemented. Except for variables, these declarations are usually put to header
(or declaration) files, which are then included into source files that uses or implements them.
This implementation is often called definition of the function or class (see also Sec. 4). Then, a
distinction is made between static and dynamic properties in the program: a static feature can
be determined or resolved when then program is compiled; whereas a dynamic one is completely
defined only when the program is executed (for example, it depends on some quantity given by
the user at run time).

Finally, all instruction lines must end with a semicolon “;” ...

2 Basic syntax

For those who already know about C programming language, it is in principle possible to use
any C instruction in C++ too. Although this might be very helpful for people having good
skills for inputs / outputs in C, it is however recommended to switch to C++ syntax, as far as
memory allocation is concerned, and to forget about malloc or free...

2.1 Types and variables

A variable is the basic brick of the program: it contains information to be processed like e.g.
numbers. Indeed, some of the simplest types of variable, that are pre-defined in C++ are int,
float, double, char, bool, ...:

• int n ; n = 5 ; integer number;

• float x=1.5e10F ; real floating-point number in single precision; stored on 4 bytes, it
describes 8 digits (here x = 1.5× 1010);

• double y ; y=2.3e-9 ; real floating-point number in double precision; stored on 8 bytes,
it describes 16 digits (here y = 2.3× 10−9);

• char l=’w’; a single character (’\n’is a newline, ’\t’a tabulation, ...);

• bool f=true; boolean variable that can only be true or false.
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The word “const” in front of a type name means that the variable is constant and thus its value
cannot be modified by the program. Constant variables are initialised when they are declared:

const int n = 8 ; // now, writing ’n=2;’ is forbidden!

Variables can be declared at any point in the code, provided that, of course, they are declared
before they are used. The declaration is valid only within the local block, i.e. within the region
limited by braces (“{ }”). In the example of Sec. 4.1, the variable square is defined only
until the first “}”, two lines after. It is the local declaration scope of variables in C++.

2.2 Pointers and references

A pointer on a variable is the address where this variable is stored in the system memory.
Pointers can then also be used as variables in the program.

int n ;
n = 2 ;
int *p ;
p = &n ;
int x = *p ;

In this example, p is declared on third line as a variable of type “pointer on an integer” (the
type is int *); the line after, it is initialised to be the address of the variable n (the ampersand
meaning “the address of”). Finally, if one wants to use the value stored at the address defined
by p, a star (*) must be put in front of the pointer: on the last line, x is initialised to 2. One
can therefore see two ways of manipulating variables: through their values (like n or x in this
example), or through their addresses (like p).

In C++, there is a third way to do so: the references. A reference to a variable can be seen
as an equivalent to this variable: if one of the couple (variable / reference) is modified, the other
is changed too.

int n ;
n = 3 ;
int &r = n ;
r++ ; //equivalent to r = r + 1 ;
int x = r - n ;

Here, r is declared as a reference to an integer (type int &) and must be immediately initialised,
like const variables. In the fourth line, r is incremented, and so is n, since they are equivalent:
every modification to r also affects n! The results is that, on the last line, x is initialised to
4-4=0.

Constant pointers have a rather different meaning from constant values. const double *x;
means that the variable pointed by x is constant, not x! This means that one can write:

int n=3;
int p=4;
const int *pn = &n ;
pn = &p ; // OK
*pn = 9 ; //forbidden!

One can change the address pn (in this case, from the address of n to the address of p), but one
can access the variable pointed by this address in readonly mode. In order to have a constant
address, the following syntax must be used:
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int *const pp = &p ;

in that case, an instruction of the type pp = &n; is forbidden. Thus, writing const int *const
pq = &n ; means that both the address pq and the variable stored at this address are constant.
As for references, only the syntax const double &x; has a meaning: x can be accessed in
readonly mode.

2.3 Functions

In C++, a function is a name and a list of arguments; eventually it returns something. All
parts of the code (main program, subprograms) are functions and, apart from the main one,
they must all be declared before there is a call to them. This declaration is only the statement
of (from left to right): the return type (if the functions returns nothing, then it is void), the
name of the function and, in between parenthesis, a list of the types of its arguments. If there
is no argument, then empty parenthesis () should be used. An example can be seen in Sec. 4.1,
with the function my function, returning a double and having as arguments a double and an
int. It is declared before the call in the function main (the main program, which always returns
an int, and which is compulsory to have a code running); it is then defined after this main
program. Note that the function main does not need to be declared.

Some arguments can be set to default values in the declaration of a function. Consider, for
example the declaration of a function that displays an integer in a given base:

void display_integer(int num, int base=10) ;

so that it is called display integer(128, 16), to display 128 in hexadecimal base. But with
the declaration done above, one can call it also display integer(20) to display 20 in decimal
base. The second argument has a default value, that need not be specified at the function call.
Such arguments (there can be several of them) must always be located at the end of the argument
list and, if an argument with a default value has its value specified, all those which are before
him must also have their values specified. Please note that default values appear only in the
declaration and never in the definition of a function.

As stated at the beginning of this section, a function is specified not only by its name, but
also by the list of the types of its arguments. Therefore, it is possible to overload a function
with another having the same name, but different arguments:

int sum(int a, int b) ;
double sum(double x, double y) ;

When the function sum is called, the choice is made (when compiling) looking at the arguments’
types. Note that the return type is not discriminatory and a function double sum(int, int)
cannot be declared together with the first one of the here-above example.

To end with functions, a few details about arguments and return values are given. A variable
given as an argument to a function is not “passed” in the strict sense: the function makes a copy
of the variable and works on that copy. This means that a function cannot modify a variable,
passed as argument! This can be seen on the following example:

void swap(int a, int b) { int c=a;
a=b; b=c ; }
int main() {
int n = 2 ; int p = 3 ;
swap(n,p) ; }
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After the call to swap, n=2 and p=3 still! The way of doing here is to pass the variables by
their addresses or references on them.

void swap(int *a, int *b) { int c= *a;
*a=*b; *b=c; }
int main() {
int n = 2 ; int p = 3 ;
swap(&n,&p) ; }

or

void swap(int &a, int &b) { int c=a;
a=b; b=c ; }
int main() {
int n = 2 ; int p = 3 ;
swap(n,p) ; }

... and everything works fine, since a copy of the address (or reference) still points on (refers to)
the same variable. Therefore, if a variable is an output argument of a function, it should not be
passed by its value.

2.4 Tests, loops and operators

A simple test is written as follows:

if (a > 5) {
b = 5 ; //etc ...
}
else { // if needed
b = 3 ;
}

The expression following the word if must be surrounded by parenthesis and of boolean type:
(n == 2) equality test, which is different from assignment and has two =’s, (p != 0) different
from, (x >= 2.e3), ... or a combination of such, using &&(logical “and”) or ||(logical “or”).
If the condition is true, then the block following it is executed. Eventually, one can put an
instruction (followed by a block) else{...}. Several other tests are available:

• do {...} while (some test)

• while (some test) {...}

• some test ? action1 : action2 ;

In this last case (conditional operator), if “some test” is true then “action1” is executed, oth-
erwise, it is “action2”.

The operator switch is used to choose between different instructions depending on the value
of an integer-like variable:

switch (n) {
case 0 :
p = 2 ;
break ;
case 1 :
p = 3 ;
break ;
default:
p = 0 ;
l = 3 ;
break ;
}
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Finally, a test that is often useful is given by the assert command:

#include<assert.h>
void my_log(double a) {
assert(a > 0.) ;
... }

After the inclusion of its declaration in the file assert.h, the use is assert( boolean expression
). If the boolean expression is true, then the code continues to the next line; otherwise the code
is stopped by an abort() command. The advantage is that, when compiling the code with the
-DNDEBUG option, the assert tests are not performed and thus, for an optimised version, it is
costless.

The syntax for a loop is quite simple and needs three instructions :

1. the initialisation of the loop variable

2. the test (done before loop instructions)

3. the increment of the loop variable (each time the loop is ended)

for (int i=0; i<20; i++) {
... //loop instructions
}

Here, i runs from 0 to 19; note that it is a variable local to the loop i.e. it is no longer valid
after the loop.

It is also worth mentioning some of the arithmetic operators, the last ones in this table can
shorten some expressions:

operator +, -, *, / % += (a += 5;) -=, *=, /=, %= ++ (a++;)
meaning usual arithmetic module1 a = a + 5; similar to += a = a + 1;

2.5 Inputs / Outputs

This section deals with formatted input/output manipulations. These are done through input-
or output-streams and the iostream library. The “standard output” (the shell console on which
one is typing commands) is called cout, and one can send it data thanks to the injection operator
“<<”:

int a = 9 ;
cout << a ;

will display ’9’. Strings can be displayed directly: cout<<"Hello world!"<<endl; where endl
stands for a new line (and empties the buffer). More about strings is given in Sec. 2.6. All stan-
dard types (see Sec. 2.1) can be outputted in this way, without specification of the format to be
used. In order to change the format (precision, fixed / scientific, etc ...), manipulators are em-
ployed (see http://www.fredosaurus.com/notes-cpp/io/omanipulators.html). Standard
input (from the keyboard, in the console) is accessed through cin:

1module being the operation that gives the remainder of a division of two integer values
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cout << "Enter a number:" << endl ;
int n ;
cin >> n ;

Any function using cin, cout or >>-like operators must have declared the iostream library and
must use the standard namespace (see Sec. 2.7) by adding the following two lines before its
definition:

#include<iostream>
using namespace std ;

Accessing to files is done in a very similar way:

double x = 1.72e3 ;
ofstream my_file("output.dat") ;
my_file << "The value of x is: " << x << endl ;

this opens a file called “output.dat” (created, if it does not exist, erased if it does) and writes
things into it. my file is an object of type ofstream (output file stream), linked with the file
opened in write-mode. Similarly, to read data from a formatted (existing) file, one should do as
for reading from the standard input:

ifstream a_file("input.dat") ;
int a ;
a_file >> a ;

In this case, a file is of type ifstream (input file stream). Before using any of these types, one
should declare, in addition to the iostream library and the standard namespace, the fstream one
with a “#include<fstream>”.

2.6 Memory allocation

There are two ways of defining an array in C++: static and dynamic allocation. The static way
is e.g. double tab[37] ; (note that the indices of tab range from 0 to 36), or with constant
integer variable for the dimension const int nsize = 100; int tbl[nsize];. Here the size
of each array is known at compilation time. On the contrary, when this size cannot be known,
one must use dynamic memory allocation:

int n ;
cout << "Enter size" << endl ;
cin >> n ;
double *tab = new double[n] ;

In this case, tab is an array, which elements can be accessed as before: from tab[0] to tab[n-1].
The syntax used here shows that an array can be seen as a pointer on its first element, so there is
an implicit compatibility between arrays and pointers. The allocation of the memory is done at
runtime thanks to the instruction new, but this memory must then be given back to the system,
using the instruction delete, when the array is no longer used: delete [] tab;

The simplest implementation of strings is done through arrays of chars, with the use of
double quotes, contrary to single chars:

char* var = "Hello!";

another example is given is Sec. 4.1. Note that such strings end with the character ’\0’, so here
var has seven elements.

A full program implementing many features described here is shown is Sec. 4.1.
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2.7 Static variables and namespaces

A static variable keeps its value from one function call to the next:

void f() {
static int n_call = 0 ;
if (n_call == 0) { ... } //first call operations
n_call++ ; ...

In this example, n call is initialised to 0 when the function is called for the first time, but it
then keeps its value (it is no longer initialised!) at next function calls. So, in this case, the value
of n call is the actual number of calls to f().

However, this kind of syntax can be replaced in C++ with the use of a namespace. This is a
declaration region that can be used in several functions, without interfering with local variables:

namespace my_name {
int i, a ;
void g() ;
}

Here is declared a namespace called my name with i, a and the function g as members. After
including the file containing this namespace, one can use some of its variables my name::i =
0;, or the whole namespace:

using namespace my_name ;
g() ;

In such case there is no need to specify my name::, the call to g() means my name::g(). In
Lorene, namespaces are used to carry unit definitions (numerical constants). Finally, in order
to replace static variables, one should use an anonymous namespace:

namespace {
int n_call = 0 ;
}
void f() {
if (n_call ... }

in particular, there is no instruction using.

3 Classes

A class is a collection of data and functions. It generalises the notion of type by giving the
possibility to the programmer to define new types of his own. In particular, one can overload
(see Sec. 2.3) standard operators (e.g. arithmetic operators, or output) with these new types,
as it is shown in complete examples of Sec. 4.2 and 4.3. Once a class is declared and defined,
one can declare variables of that new type, use pointers on it or references to it, as if it were a
standard type (double, int, ...). Classes has already been used in this document: output files
were declared as ofstream in Sec. 2.5, which is a C++ class...
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3.1 Members

To declare a class, one must specify its members: data (variables of other types, including
eventually other classes) and functions, sometimes called methods. The syntax is:

class My_class {
int n ;
double x ;
double f(int) ;
} ;

This declares a class called My class, with two data members, called x and n, and one method
f(int). Actually, the full name of the method is (to be used when defining it outside the class
declaration):

double My_class::f(int p) {
x = 2.3*(p+n) ;
double res = 3./x ;
...}

Methods of a class can use the data without need to re-declare them: here n or x are known to
be members of My class.

In a function using this class, these members are used the following way (one must include
the declaration of the class before using it)1:

My_class w ;
int q = w.n + 2 ;
cout << w.f(q) ;

The variable w is an object of type My class, and has its own members that can be accessed
through the operator “.”. When considering pointers, the operator is “->”:

My_class *v ;
double y = v->x + 0.2 ;
cout << v->f(3) ;

Usual arithmetic operators can be overloaded to work with this new class:
e.g. My_class operator+(My_class, My_class); for the declaration, and, in some other func-
tion:

My_class z1 ;
My_class z2 ;
My_class t = z1 + z2 ;

3.2 Restriction of access and const issues

A central notion when manipulating classes is that some of its members are not accessible (i.e.
usable) by “normal” functions, (functions which are not member of the same class. This is called
restriction of access and is achieved through the keywords public, private and protected:

1the first line assumes that there is a constructor (see Sec. 3.3) without parameters
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class My_class {
private:
int n ;
double x ;
public:
double f(int) ;
private:
void g() ;
} ;

In this case, data and the method My class::g() are private, meaning that only functions
member of My class can use them, therefore the last two lines of

My_class v ;
cout << v.n ;
v.g() ;

are forbidden in all other functions. On the contrary, a call to v.f(2) is allowed. By default, all
members of a class are private, so it is highly recommended to use the keywords when declaring
a class. Such a keyword is valid until the use of another one; and protected has the same effect
as private in a class, the difference appearing only for derived classes (Sec. 3.4).

Exceptions can be made declaring some functions or other classes to be friend, within the
declaration of the class:

class My_class {
private:
int n ; ...
friend double ext_f() ;
} ;

Then, inside the definition of the non-class member double ext f(), one can access private
and protected members of My class. A class can be declared friend the same way: adding
friend class Other_class ; in the declaration of My class and, inside all methods of Other class,
it is then possible to access to private/protected members of My class.

The notion of constant object (see Sec. 2.1) means for a class that all data of this object
are constant. Exceptions are possible with the keyword mutable: a mutable data member is a
member that can be modified, although the object it belongs to is seen as constant. The idea
can be that mutable members are somehow “secondary” members, that can be deduced from
other “primary” data. So, as long as these primary data are not modified, the object is supposed
constant. The syntax is, within a class declaration:

class My_class {
public:
int n; ...
mutable double sec ;
} ;

So, in a function using My class, one has then:

const My_class w = ... ;
w.n = 2 ; // forbidden!
w.sec = 0.7 ; // OK
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A member function that keeps the object it is called on constant is said constant too, the
keyword const can be added at the end of its declaration and definition:

class My_class {
...
double f(int) const ;
void g() ;
... };

Here, double My class::f(int) is constant, whereas void My class::g() is not. As before,
in a function using this class:

const My_class w = ... ;
cout << w.f(2) ; //OK
w.g() ; //forbidden!

3.3 Constructors, destructor and assignment operator

When designing a new class, special care must be devoted to four particular member functions:

• a standard constructor – this function is called to create an object of this class. It has
the same name as the class, and no return type (e.g. My class::My class(). It can take
arguments or not and its task can be (not compulsory at all) to initialise data members
or to allocate memory.

• a copy constructor – creates an object from an existing one. It is also a constructor as
the standard one but it must take exactly one argument of the type const My class &,
meaning that it needs a reference on an object of that class that will not be modified to
build the new object (readonly!).

• a destructor – destroys the object when it is no longer valid, i.e. at the end of its declaration
scope. Its task is mainly to check if there is some dynamically allocated memory to be
given back to the system. It has the same name as the class, but with a tilde (˜) in front;
it takes no argument and has no return type.

• an assignment operator – used to assign an existing object to another one, with an instruc-
tion like a=b. Its name is My class::operator= and, as the copy constructor, it takes one
argument of the type const My class &.

These four methods are compulsory to have a usable class. Note that there can be several
constructors as long as there is a copy constructor and a standard one. A “fifth” function
is very useful: an overload of the << operator to display objects of the class. This function
is necessarily an external one (i.e. it is not a member of the class) and can also be used to
output to files instead of cout. A full example implementing all these functions, together with a
main function is shown in Sec. 4.2, with the class rational, representing rational numbers. In
particular, in the definition of this class (Sec. 4.2.2), both constructors use the initialisation list
that directly initialises class data from the constructor’s arguments

rational::rational(int a, int b) : num(a), denom(b) { ...}

Here, data num and denom are directly copied from the variables a and b; i.e. it is equivalent to
writing
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rational::rational(int a, int b) {
num = a ;
denom = b ; ... }

Still, the initialisation list is more readable and will be used for derived classes (see next section).
Another example is given by the class My array in Sec. 4.3, with dynamic memory allocation

(i.e. a non-trivial destructor). Only the main structure is given, but the class can be compiled.

3.4 Derived classes

An existing class can be completed into a new class, which then has more members. This is the
inheritance mechanism that allows the (new) derived class to get the properties of the (existing)
base class, and to add new ones. The declaration of the new class is done as follows (once the
class My class has been declared):

class New_class : public My_class {
int p ;
int h() ; }

In this example, the class New class is derived from My class, to which it adds two new mem-
bers.

Actually, the derived class does not inherit all members of the base class. First, the private
members are not accessible to the derived class methods (whereas protected ones are! This is
the difference between private and protected access); then, none of the assignment operators
(which name are operator=), constructors or destructor are inherited. Therefore, one must
re-declare and re-define these members, but with the help of their equivalents in the base class.
In particular, for the constructors of the derived class, one must first call the constructor for
the base class, through the initialisation list. Then, the new members of the derived class are
initialised in this list and, finally, other actions are performed in the body of the constructor.
The destructor for the new class works in the opposite way: first the new members must have
their memory given back to the system (if any) and, at the end, there is automatically a call
to the destructor of the base class. A simple example is given in Sec. 4.3.4, with the new class
Square matrix being a derived class from My array, but with no new data member.

A very important point is that there is an implicit compatibility between the derived class
and the base class. This is valid only for pointers and references to the derived class, which can
be used instead of pointers or references to the base class.

My_class *w ;
New_class *q ;
w = q ;

is allowed, whereas q = w; is forbidden. After the third line above, the static type of w is
My class * (obtained from the declaration), whereas the dynamic type is New class *, since
it is pointing on an object of this derived class. This dynamic type cannot, in general, be
determined at compilation time (imagine there is a test depending on some reading from cin,
to decide whether w = q is invoked or not). If one wants to know, in this example, the type of
w, a possibility is to use the instruction dynamic cast:

New_class *z = dynamic_cast<New_class *>(w) ;
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In that case, if the dynamic type of w is New class *, then z != 0x0 (z is not the null pointer).
Actually, this is the case if w is compatible with the type; i.e. z is not null also if w is a pointer
on a derived class of New class.

The equivalent for references can be seen in the assignment operator of Square matrix
(Sec. 4.3.4), where there is a call to the assignment operator of the base class My array, but
with a reference to an object of the derived class as argument, instead of a reference to an object
of the base class (see the declaration of My array::operator=).

3.5 Virtual methods

In the examples cited above, a problem can arise if the derived class re-declares a method of the
base class:

class My_class {
double f(int) ; ...} ;
class New_class : public My_class {
double f(int) ; //different from that of My_class
...} ;
My_class *w ;
New_class *q ;
int v ; cin >> v ;
if (v==0) {
w = q ; }
cout << w->f(2) ;

Which method f(int) is called ? This is impossible to determine at compilation time, but is not
an academical problem since, in each derived class, this is exactly the case for destructors. In
the above example, it might happen that not all the memory allocated to w is freed. Therefore,
there is a mechanism in C++ called polymorphism that makes the link with the right function
at execution time (dynamically). It is obtained by the use of the keyword virtual, for the
declaration, in front of such “ambiguous” methods:

class My_class {
virtual double f(int) ; ...} ;
class New_class : public My_class {
virtual double f(int) ;
...} ;

Now, everything works fine and the call is done to the right function. The only requirement is
that the list of arguments must be the same for all the virtual functions having the same name.
Note that, every time inheritance is used, one must declare all destructors of base / derived
classes as virtual. Another example is given in Sec. 4.3.3 with the method display(ostream&):
the standard display is achieved through the call to operator<< which, thanks to implicit
compatibility, can also be called with (reference to) Square matrix objects. This function then
calls to the virtual method display(ostream&), which gives different output, depending on the
type of tab in.

3.6 Abstract classes

With the possibility of deriving classes, it is sometimes interesting to have some classes that are
not actually usable, but that can be used as templates for the design of other classes. These
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classes therefore possess one or several methods that are too general to be defined (implemented):
in Lorene, this is the case e.g. for a general equation of state. Such kind of functions are then
declared as pure virtual method. The declaration is then ended with a “=0 ;” and no definition
is given:

class Eos {
virtual double p_from_rho(double) = 0 ; ... };

Still, a derived class, which is usually more specific, can implement that method, using poly-
morphism:

class Eos_polytrope: public Eos {
virtual double p_from_rho(double) ; ... };

In the example of Eos, one cannot declare an object of this type, since the class is incomplete,
only a derived class which implements the pure virtual methods can be used. Nevertheless, one
can declare a pointer or a reference to an Eos:

Eos eo ; //forbidden
Eos_polytrope ep ; //allowed, it implements p_from_rho
Eos *p_eos = &ep ; // OK, not instance + implicit compatibility
Eos &r_eos = ep ; // OK, not instance + implicit compatibility

Eos is called an abstract class, for one cannot declare any instance (no direct objects, only
pointers or references to) of this class. More generally, since an abstract class is a class which
cannot be instantiated, these are classes that:

• have a pure virtual method;

• derive from a class with a pure virtual method that they do not define;

• have only private or protected constructors.

4 Examples

4.1 A first program

This program does not do any interesting job, it is just an illustration of the basic syntax in
C++.

// C++ headers
#include <iostream> //<> are for system headers, "" for user-defined ones
#include <fstream>
// C headers
#include <math.h> // in principle, C headers contain a .h, whereas C++ do not
using namespace std ; // to get input / output objects (cin, cout, ...)
double my_function(double , int) ; // local prototype (declaration only)

int main(){ // In every executable there must be a main function returning an integer
const int nmax = 200 ;
double stat_array[nmax] ; //static allocation of memory
char dim[] = "size" ;
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cout << "Please enter a "<< dim << " for an array between 1 and 200" << endl ;
int dyn_size ;
cin>>dyn_size ;
if ((dyn_size<1)||(dyn_size>200)) {

cout << "the " << dim <<" must be between 1 and 200!" << endl ;
cout << "try again: " ;
while ((dyn_size<1)||(dyn_size>200)) cin>>dyn_size ;

}
double *dyn_array = new double[dyn_size] ; //dynamic memory allocation
for (int i=0; i<nmax; i++) {

int square = i*i ;
stat_array[i] = square ;

}
double cube ;
for (int i=0; i<dyn_size; i++) {

cube = pow(double(i),3) ; //Conversion of an integer to a double
dyn_array[i] = cube + my_function(stat_array[i], dyn_size) ;

}
cout << "The value of the variable dyn_array is: " << dyn_array << endl ;
cout << "its first element is: "<< *dyn_array

<< " or, alternatively: " << dyn_array[0] << endl ;
cout << "Saving dyn_array to the file exa1.dat..." << endl ;
ofstream output_file("exa1.dat") ;
for (int i=0; i<dyn_size; i++) {

output_file << i << ’\t’ << dyn_array[i] << ’\n’ ; }
output_file << endl ;
delete[] dyn_array ; // It is necessary to release the allocated memory...
return EXIT_SUCCESS ; // If the program came up to here, everything went fine

}
// definition of "my_fonction"
double my_function(double x, int n) {
double resu = log(x+double(n)) ;
return resu ;

}

4.2 A class of rational numbers

To compile it, just type (e.g. with the GNU C++ compiler):
g++ -o ratio ratio.C rational.C gcd.C

4.2.1 Declaration file rational.h

#ifndef __RATIONAL_H_ // to avoid multiple declarations
#define __RATIONAL_H_
#include <iostream> // ostream class is used
using namespace std ;
class rational { // beginning of the declaration of class rational

// Data:
// -----
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private:
int num ; // numerator
int denom ; // denominator

//Required member functions
//-------------------------

public:
rational(int a, int b = 1) ; // Standard constructor to create a/b
rational(const rational& ) ; // Copy constructor

~rational() ; // Destructor

void operator=(const rational&) ; //Assignment from another rational

// Data access
// -----------
int get_num() const {return num ; }; //inline definition
int get_denom() const {return denom ; } ; //inline definition

//Display: declaration of "friendness" only
friend ostream& operator<<(ostream& , const rational& ) ;

}; // end of the declaration of class rational

//True declaration of the function, not member of the class
ostream& operator<<(ostream& , const rational& ) ;
// External arithmetic operators to calculate expressions such as ’p + q*r’
rational operator+(const rational&, const rational&) ; // rational + rational
rational operator-(const rational&, const rational&) ; // rational - rational
rational operator*(const rational&, const rational&) ; // rational * rational
rational operator/(const rational&, const rational&) ; // rational / rational
#endif

4.2.2 Definition file rational.C

// Include files
#include <assert.h>
#include "rational.h"

int gcd(int, int) ; //local prototype of an external function (greatest common divisor)

//--------------//
// Constructors //
//--------------//
// Standard
rational::rational(int a, int b):num(a), denom(b) {
assert(b!=0) ;

if (num == 0) denom = 1 ;

16



else {
int c = gcd(a, b) ;
num /= c ;
denom /= c ;

}
}

// Copy
rational::rational(const rational & rat_in): num(rat_in.num), denom(rat_in.denom)
{
assert(rat_in.denom != 0) ;
assert(gcd(num, denom) == 1) ;

}
//------------//
// Destructor //
//------------//
rational::~rational() { }

//------------//
// Assignment //
//------------//
// From rational
void rational::operator=(const rational & rat_in) {
assert(rat_in.denom != 0) ;
num = rat_in.num ;
denom = rat_in.denom ;
assert(gcd(num, denom) == 1) ;

}

//---------//
// Display //
//---------//
// Operator <<
ostream& operator<<(ostream& o, const rational & rat_in) {

if (rat_in.denom == 1) o << rat_in.num ; //as a friend it can access private data
else

o << rat_in.num << "/" << rat_in.denom ;
return o ;

}

//-----------//
// Addition //
//-----------//

// rational + rational, not friend, must use access functions
rational operator+(const rational& t1, const rational& t2) {
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rational resu(t1.get_num()*t2.get_denom() + t2.get_num()*t1.get_denom(),
t1.get_denom()*t2.get_denom()) ;
return resu ;

}

4.2.3 GCD function

int gcd(int a, int b) {
if (a<b) {

int c = a ;
a = b ;
b = c ;

}
int reste = a%b ;
while (reste != 0) {

a = b ;
b = reste ;
reste = a%b ;

}
return b ;

}

4.2.4 Main program ratio.C

//Declarations of the class rational
#include "rational.h"

int main(){
rational p(420,315) ; // 420/315, simplified by the constructor
rational q(5) ; // 5/1
cout<< p + q<< endl ; // call to operator+ and operator<<

return EXIT_SUCCESS ;
}

4.3 Classes My array and Square matrix

Although the classes My array and Square matrix can be compiled, they have incomplete fea-
tures to be used on some real example. Only declaration and definition are given for better
clarity.

4.3.1 Declaration file my array.h

#ifndef __MY_ARRAY_H_
#define __MY_ARRAY_H_

#include<iostream>
#include<assert.h>
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using namespace std ;

class My_array {
// Data :
// ------

protected:
int size1 ; //size in first dimension ...
int size2 ;
int size3 ;
double* tableau ; // the actual array

// Constructors - Destructor
// ---------------------------

public:
explicit My_array(int dim1, int dim2=1, int dim3=1) ; //standard constructor
My_array(const My_array&) ; //copy constructor

virtual ~My_array() ; //destructor

// Assignments
// -----------

void operator=(const My_array&) ; //assignment from another My_array

// Data access (inline)
// --------------------

int get_size1() const {return size1 ; };
int get_size2() const {return size2 ; };
int get_size3() const {return size3 ; };

double operator()(int i, int j=0, int k=0) const { //read-only access (const)
assert ((i>=0) && (i<size1)) ; // tests: are we beyond array bounds?
assert ((j>=0) && (j<size2)) ;
assert ((k>=0) && (k<size3)) ;

return tableau[(i*size2 + j)*size3 + k] ;
};

double& set(int i, int j=0, int k=0) { //read-write access (thanks to the reference!)
assert ((i>=0) && (i<size1)) ;
assert ((j>=0) && (j<size2)) ;
assert ((k>=0) && (k<size3)) ;
return tableau[(i*size2 + j)*size3 + k] ;

};

protected:
virtual void display(ostream& ) const ; //to use polymorphism

// External function to be called for the display
friend ostream& operator<<(ostream&, const My_array& ) ;
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};

ostream& operator<<(ostream&, const My_array& ) ;
#endif

4.3.2 Definition file my array.C

#include<fstream> // to manipulate file streams ...
#include<iomanip> // ... and output format.
#include "my_array.h"

My_array::My_array(int dim1, int dim2, int dim3) : size1(dim1), size2(dim2), size3(dim3),
tableau(0x0) {
assert((dim1>0)&&(dim2>0)&&(dim3>0)) ;
tableau = new double[dim1*dim2*dim3] ;

}

My_array::My_array(const My_array& tab_in) : size1(tab_in.size1), size2(tab_in.size2),
size3(tab_in.size3), tableau(0x0) {

assert((size1>0)&&(size2>0)&&(size3>0)) ;
int t_tot = size1*size2*size3 ;
tableau = new double[t_tot] ;
assert(tab_in.tableau != 0x0) ;
for (int i=0; i<t_tot; i++)
tableau[i] = tab_in.tableau[i] ;

}

My_array::~My_array() {
if (tableau != 0x0) delete [] tableau ;

}

void My_array::operator=(const My_array& tab_in) {
assert(size1 == tab_in.size1) ;
assert(size2 == tab_in.size2) ;
assert(size3 == tab_in.size3) ;
assert(tab_in.tableau != 0x0) ;
assert(tableau != 0x0) ;

int t_tot = size1*size2*size3 ;
for (int i=0; i<t_tot; i++)

tableau[i] = tab_in.tableau[i] ;
}

void My_array::display(ostream& ost) const {
assert(tableau != 0x0) ;

ost << "My_array: \n";
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ost << size1 << "x" << size2 << "x" << size3 << " elements" << endl ;
ost << setprecision(5) ;

for (int i=0; i<size1; i++) {
ost << "i=" << i << ’\n’ ;
for (int j=0; j<size2; j++) {

for (int k=0; k<size3; k++) {
ost << tableau[(i*size2+j)*size3 + k] << ’\t’ ;

}
ost << endl ;

}
ost << endl ;

}
ost << endl ;
return ;

}

ostream& operator<<(ostream& ost, const My_array& tab_in ) {
assert(tab_in.tableau != 0x0) ;
tab_in.display(ost) ;
return ost ;

}

4.3.3 Declaration file matrix.h

#ifndef __SQUARE_MATRIX_H_
#define __SQUARE_MATRIX_H_
#include "my_array.h"

class Square_matrix: public My_array { //inherits from My_array

// Constructors - Destructor
// ---------------------------

public:
explicit Square_matrix(int ) ; //standard constructor
Square_matrix (const Square_matrix& ) ; //copy constructor

virtual ~Square_matrix() ; //destructor (virtual, as needed)

// Assignment
// -----------
void operator=(const Square_matrix&) ; //assignment from another Square_matrix

protected:
virtual void affiche(ostream& ) const ; //Display (virtual)

};
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#endif

4.3.4 Definition file matrix.C

#include<iomanip> //to have the manipulator setprecision()
#include "matrix.h"

// Default constructor
//--------------------
Square_matrix::Square_matrix(int dim1) : My_array(dim1, dim1) {
assert(dim1>0) ;

}

// Copy constructor
//-----------------
Square_matrix::Square_matrix(const Square_matrix& tab_in) : My_array(tab_in) {}

// Destructor (does nothing, since there is an implicit call to ~My_array() )
//-----------
Square_matrix::~Square_matrix() {}

// Assignment operator
//--------------------
void Square_matrix::operator=(const Square_matrix& tab_in) {
My_array::operator=(tab_in) ;

}

// Display
//--------
void Square_matrix::affiche(ostream& ost) const {
assert(tableau != 0x0) ;

ost << "Square_matrix " << size1 << "x" << size2 << endl ;
ost << setprecision(5) ;
for (int i=0; i<size1; i++) {

for (int j=0; j<size2; j++) {
ost << tableau[i*size2 + j] << ’\t’ ;

}
ost << endl ;

}
ost << endl ;

}
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