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Jérôme Novak

Time evolution

Time
discretization

Integration
schemes

Integration
schemes

Wave equation

Explicit scheme

Implicit scheme

Boundaries

Outgoing
conditions

Sommerfeld BC

Asymptotics

Enhanced BC

Plan

1 Time evolution and spectral methods
Time discretization
Integration schemes
Integration schemes

2 Wave equation
Explicit scheme
Implicit scheme
Boundaries

3 Absorbing boundary conditions
Sommerfeld BC
General form of the solution
Absorbing BC for l ≤ 2



Wave equation
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Time discretization

It seems that, in general, there is no efficient spectral decomposition
for the time coordinate...
⇒use of finite-differences schemes ! t is discretized (usually) on an
equally-spaced grid, with a times-step δt : UJ = U(J × δt).

dU

dt
= F (U) = L(U) + Q(U)

Study, for different integration schemes of :

stability : ∀n‖Un‖ ≤ CeKt|U0‖, for some δt < δlim,

region of absolute stability : when considering

dU

dt
= λU,

the region in the complex plane for λδt for which ‖Un‖is
bounded for all n,

unconditional stability : if δ is independent from N (level of
spectral truncation).
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One-dimensional study

To use the knowledge of the region of absolute stability, it is
necessary to diagonalize the matrix L and study its eigen-values λi.
In one dimension :

First-order Fourier

For L = d/dx, one finds max |λi| = O (N)

First-order Chebyshev

For L = d/dx, one finds max |λi| = O
(
N2

)
Second-order Fourier

For L = d/dx2, one finds max |λi| = O
(
N2

)
Second-order Chebyshev

For L = d2/dx2, one finds max |λi| = O
(
N4

)
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Time integration schemes
Most popular...

Explicit

first-order Adams-Bashford scheme (a.k.a forward Euler) :

Un+1 = Un + δtF (Un) ,

second-order Adams-Bashford scheme :

Un+1 = Un + δt

[
23

12
F (Un)− 16

12
F

(
Un−1

)
+

5

12
F

(
Un−2

)]
,

Runge-Kutta schemes...

All these exhibit a bounded region of absolute stability
⇒∃K > 0, δt ≤ K/ max |λi| (Courant condition ...).
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Time integration schemes
Most popular...

Implicit

Adams-Moulton :

first-order (a.k.a backward Euler scheme)

Un+1 = Un + δtF
(
Un+1

)
,

second-order (a.k.a. Crank-Nicholson scheme)

Un+1 = Un +
1

2
δt

[
F

(
Un+1

)
+ F (Un)

]
.

Both have an unbounded region of absolute stability in the left
complex half-plane ⇒unconditionally stable schemes.
Higher-order AM schemes have only a bounded region of absolute
stability.

Schemes can be mixed and various source terms can be treated in
different ways (e.g. linear ⇒implicit / non-linear ⇒explicit).
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Wave equation

The three-dimensional wave equation in spherical coordinates :

�φ = − 1

c2

∂2φ

∂t2
+

∂2φ

∂r2
+

2

r

∂φ

∂r
+

1

r2
∆θϕφ = σ;

with

∆θϕ ≡
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

In 1D, it admits two characteristics : ±c : f(ct− x) and f(ct + x).
To be well-posed, the initial-boundary value problem needs :

φ(t = 0) and ∂φ/∂t(t = 0),

a boundary condition at every domain boundary (Dirichlet, von
Neumann, mixed).
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An explicit scheme for the wave

equation

Using a second-order scheme to evaluate the second time derivative

∂2φ

∂t2

∣∣∣∣
t=tJ

=
φJ+1 − 2φJ + φJ−1

δt2
+ O

(
δt4

)
,

one recovers the forward Euler scheme

φJ+1 = 2φJ − φJ−1 + δt2
(
∆φJ + σ

)
+ O(δt4).

Solution of the initial-boundary value problem inside a sphere or
r ≤ R :

initial profiles at t = t0 and t = t1,

∀t > t1, a value for φ(r = R).

With spectral methods using Chebyshev polynomials in r, time-step
limitation is coming from the second radial derivative :

δt2 ≤ K/N4.

Complete 3D problem ⇒regularity conditions at the origin too, for
` > 1.
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Implicit scheme

With the same formula for the second time derivative and the
Crank-Nicholson scheme :[

1− δt2

2
∆

]
φJ+1 = 2φJ − φJ−1 + δt2

(
1

2
∆φJ−1 + σJ

)
.

One must invert the operator 1− 1/2δt2∆ ; one way is :

consider the spectral representation of φ in terms of spherical
harmonics (∆θϕY m

` = −`(` + 1)Y m
` ) ;

solve the ordinary differential equation in r as a simple linear
system, using e.g. the tau method.

⇒one can add boundary and regularity conditions depending on the
multipolar momentum `.
⇒beware of the condition number of the operator matrix !
⇒sometimes regularity is better imposed (stable) using a Galerkin
base.
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Domain boundaries

Contrary to the Laplace operator ∆, the d’Alembert one � is not
invariant under inversion / sphere.

one cannot a priori use a change of variable u = 1/r !

the distance between two neighboring grid points becomes larger
than the wavelength...

⇒domain of integration bounded (e.g. within a sphere of radius R).

Two types of BCs :

reflecting BC : φ(r = R) = 0,

absorbing BC...
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An absorbing BC can be seen in 1D : at x = 1 one imposes no
incoming characteristic ⇒only f(ct− x) mode.
In spherical 3D geometry : asymptotically, the solution must match

φ ∼r→∞
1

r
f(ct− r),

equivalently,

lim
r→∞

∂(rφ)

∂t
+ c

∂(rφ)

∂t
= 0.

At finite distance R :(
1

c

∂φ

∂t
+

∂φ

∂r
+

φ

r

)∣∣∣∣
r=R

= 0;

which is exact in spherical symmetry.
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General form of the solution

The homogeneous wave equation �φ = 0 admits as asymptotic
development of its solution

φ(t, r, θ, ϕ) =
∞∑

k=1

fk(t− r, θ, ϕ)

rk
.

One can show that the contribution from a mode ` exists only for
k ≤ ` + 1. Moreover, the operators :

B1f =
∂f

∂t
+

∂f

∂r
+

f

r
, Bn+1f =

(
∂

∂t
+

∂

∂r
+

2n + 1

r

)
Bnf

are such that the condition Bnφ = 0 matches the first n terms
(Bnφ = O

(
1/r2n+1

)
). It follows that

Bnφ = 0
is a nth-order BC,
is exact for all modes ` ≤ n− 1,
is asymptotically exact with an error decreasing like 1/Rn+1,
is the generalization of the Sommerfeld BC at finite distance
(n = 1).
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Absorbing BC for l ≤ 2

The condition B3φ = 0 at r = R writes

∀(t, θ, ϕ), B1φ|r=R =

(
∂

∂t
+

∂

∂r
+

1

r

)
φ(t, r, θ, ϕ)

∣∣∣∣
r=R

= ξ(t, θ, ϕ),

with ξ(t, θ, ϕ) verifying a wave-like equation on the sphere r = R

∂2ξ

∂t2
− 3

4R2
∆θϕξ +

3

R

∂ξ

∂t
+

3ξ

2R2
=

1

2R2
∆θϕ

(
φ

R
− ∂φ

∂r

∣∣∣∣
r=R

)
.

easy to solve if ξ is decomposed on the spectral base of spherical
harmonics !

looks like a perturbation of the Sommerfeld BC...

exact for ` ≤ 2 and the error decreases as 1/R4 for other modes.
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