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I. FIELD MANIPULATION WITH LORENE

The aim is simply to get used to Lorene library for the definition, manipulation, computation and drawing of
scalar and vector fields in spherical coordinates and/or components. For all classes and functions, please look carefully
at the documentation at Lorene/Doc/refguide/index.html.

• Setup a multi-domain three-dimensional grid. It should contain a nucleus, one or more shells and a compactified
external domain. Take it to be symmetric / equatorial plane and not symmetric / (x, y)→ (−x,−y).

• Using coordinate fields (Coord objects, members of the mapping), define a regular 3D (but symmetric / equatorial
plane) scalar field of type Scalar.

• After setting the spectral base, draw iso-contours with des coupe ... and profiles with des meridian.

• Compute the radial derivative of the field and compare it to the “analytic” value (e.g. using maxabs or
diffrelmax).

• Define a regular vector field in spherical triad, either by setting it first in a Cartesian triad and changing the
triad, or as the gradient of a scalar field (covariant derivative / flat metric). Draw the vector field.

II. TEST OF A ROTATING BLACK HOLE METRIC

With tensor calculus tools, it is easy to check whether a given metric is solution of Einstein equations. As an
example, the Kerr-Schild metric shall be tested, within the framework of the 3+1 formalism. This metric provides a
description of a rotating black hole (i.e. vacuum space-time), with a mass M and the angular momentum per unit
mass a:

gµν = fµν + 2Hlµlν ; (1)

where fµν is the flat metric,
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ρ4 + a2z2
(2)

and
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. (3)

Note that the spatial components of lµ are expressed in a Cartesian triad and ρ is related to the usual radial coordinate
r – (x, y, z) being the usual Cartesian coordinates – by the relation:
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(r2 − a2)2 + a2z2. (4)

To test it, the metric should be written in the 3+1 form1 (using only 3-tensors):

gµν dxµ dxν = −N2dt2 + γij(dxi + βidt)(dxj + βjdt); (5)

with N being the lapse, β the shift and γij the 3-metric. In this case:

N =
1√

1 + 2H
;

βi = 2Hli;
γij = fij + 2Hlilj

1 latin indices range from 1 to 3 (only spatial components), whereas greek ones range from 0 to 3
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One also defines the extrinsic curvature

Kij =
1

2N

(
£βγij −

∂

∂t
γij

)
(6)

£βγij being the Lie-derivative along the shift of the 3-metric.
The ten Einstein equations write (in vacuum):

• the Hamiltonian constraint equation:

R + K2 −KijK
ij = 0, (7)

• the three momentum constraint equations

DjK
j

i −DiK = 0, (8)

• and the six dynamical evolution equations

∂

∂t
Kij −£βKij = −DiDjN + N

[
Rij − 2KikKk

j + KKij

]
. (9)

Di is the covariant derivative / γij , K the trace of Kij , Rij and R the Ricci tensor and scalar associated with
this 3-metric.

III. SUGGESTED STEPS

• Define a grid (symmetric / (x, y) → (−x,−y) transform), with at least 4 points in ϕ to be able to rotate from
Cartesian triad to the spherical one. Either this grid is without the nucleus, to excise the black hole singularity,
or all fields should be set to 0 or 1 in the nucleus to discard the divergence near the centre. Define a mapping
on that grid.

• Setup the Kerr-Schild metric described above, with the lapse, shift and the 3-metric.

• Verify that the 1+3+6 equations above are satisfied, using the appropriate methods of classes Tensor, Vector
and Metric. Be very careful with the dzpuis flag!


