I. FIELD MANIPULATION WITH LORENE

The aim is simply to get used to Lorene library for the definition, manipulation, computation and drawing of scalar and vector fields in spherical coordinates and/or components. For all classes and functions, please look carefully at the documentation at Lorene/Doc/refguide/index.html.

- Setup a multi-domain three-dimensional grid. It should contain a nucleus, one or more shells and a compactified external domain. Take it to be symmetric / equatorial plane and not symmetric / $(x, y) \rightarrow(-x,-y)$.
- Using coordinate fields (Coord objects, members of the mapping), define a regular 3D (but symmetric / equatorial plane) scalar field of type Scalar.
- After setting the spectral base, draw iso-contours with des_coupe_... and profiles with des_meridian.
- Compute the radial derivative of the field and compare it to the "analytic" value (e.g. using maxabs or diffrelmax).
- Define a regular vector field in spherical triad, either by setting it first in a Cartesian triad and changing the triad, or as the gradient of a scalar field (covariant derivative / flat metric). Draw the vector field.

II. TEST OF A ROTATING BLACK HOLE METRIC

With tensor calculus tools, it is easy to check whether a given metric is solution of Einstein equations. As an example, the Kerr-Schild metric shall be tested, within the framework of the $3+1$ formalism. This metric provides a description of a rotating black hole (i.e. vacuum space-time), with a mass M and the angular momentum per unit mass a :

$$
\begin{equation*}
g_{\mu \nu}=f_{\mu \nu}+2 H l_{\mu} l_{\nu} \tag{1}
\end{equation*}
$$

where $f_{\mu \nu}$ is the flat metric,

$$
\begin{equation*}
H=\frac{M \rho^{3}}{\rho^{4}+a^{2} z^{2}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{\mu}=\left(1, \frac{\rho x+a y}{\rho^{2}+a^{2}}, \frac{\rho y-a x}{\rho^{2}+a^{2}}, \frac{z}{\rho}\right) . \tag{3}
\end{equation*}
$$

Note that the spatial components of l_{μ} are expressed in a Cartesian triad and ρ is related to the usual radial coordinate $r-(x, y, z)$ being the usual Cartesian coordinates - by the relation:

$$
\begin{equation*}
\rho^{2}=\frac{1}{2}\left(r^{2}-a^{2}\right)+\sqrt{\frac{1}{4}\left(r^{2}-a^{2}\right)^{2}+a^{2} z^{2}} . \tag{4}
\end{equation*}
$$

To test it, the metric should be written in the $3+1$ form ${ }^{1}$ (using only 3 -tensors):

$$
\begin{equation*}
g_{\mu \nu} d x^{\mu} d x^{\nu}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right) ; \tag{5}
\end{equation*}
$$

with N being the lapse, β the shift and $\gamma_{i j}$ the 3 -metric. In this case:

$$
\begin{aligned}
N & =\frac{1}{\sqrt{1+2 H}} \\
\beta_{i} & =2 H l_{i} \\
\gamma_{i j} & =f_{i j}+2 H l_{i} l_{j}
\end{aligned}
$$

[^0]One also defines the extrinsic curvature

$$
\begin{equation*}
K_{i j}=\frac{1}{2 N}\left(£_{\boldsymbol{\beta}} \gamma_{i j}-\frac{\partial}{\partial t} \gamma_{i j}\right) \tag{6}
\end{equation*}
$$

$£_{\boldsymbol{\beta}} \gamma_{i j}$ being the Lie-derivative along the shift of the 3 -metric.
The ten Einstein equations write (in vacuum):

- the Hamiltonian constraint equation:

$$
\begin{equation*}
R+K^{2}-K_{i j} K^{i j}=0 \tag{7}
\end{equation*}
$$

- the three momentum constraint equations

$$
\begin{equation*}
D_{j} K_{i}^{j}-D_{i} K=0, \tag{8}
\end{equation*}
$$

- and the six dynamical evolution equations

$$
\begin{equation*}
\frac{\partial}{\partial t} K_{i j}-£_{\boldsymbol{\beta}} K_{i j}=-D_{i} D_{j} N+N\left[R_{i j}-2 K_{i k} K_{j}^{k}+K K_{i j}\right] \tag{9}
\end{equation*}
$$

D_{i} is the covariant derivative $/ \gamma_{i j}, K$ the trace of $K_{i j}, R_{i j}$ and R the Ricci tensor and scalar associated with this 3-metric.

III. SUGGESTED STEPS

- Define a grid (symmetric $/(x, y) \rightarrow(-x,-y)$ transform), with at least 4 points in φ to be able to rotate from Cartesian triad to the spherical one. Either this grid is without the nucleus, to excise the black hole singularity, or all fields should be set to 0 or 1 in the nucleus to discard the divergence near the centre. Define a mapping on that grid.
- Setup the Kerr-Schild metric described above, with the lapse, shift and the 3-metric.
- Verify that the $1+3+6$ equations above are satisfied, using the appropriate methods of classes Tensor, Vector and Metric. Be very careful with the dzpuis flag!

[^0]: ${ }^{1}$ latin indices range from 1 to 3 (only spatial components), whereas greek ones range from 0 to 3

