I. A TEST PROBLEM

We propose to solve a simple 1D problem, using a single domain. Let us consider the following equation:

$$
\begin{equation*}
u^{\prime \prime}-4 u^{\prime}+4 u=\exp (x)+C \quad ; \quad x \in[-1 ; 1] \quad ; \quad C=-\frac{4 e}{1+e^{2}} \tag{1}
\end{equation*}
$$

For the boundary conditions, we adopt :

$$
\begin{equation*}
u(-1)=0 \quad \text { and } \quad u(1)=0 \tag{2}
\end{equation*}
$$

Under those conditions, the solution of the problem is

$$
\begin{equation*}
u(x)=\exp (x)-\frac{\sinh 1}{\sinh 2} \exp (2 x)+\frac{C}{4} . \tag{3}
\end{equation*}
$$

II. SUGGESTED STEPS

- Construct the matrix representation of the differential operator.
- Solve the equation using one or more of usual methods: Tau, collocation and Galerkin.
- Check whether the methods are optimal or not.

III. DISCONTINUOUS SOURCE

Let us consider the following problem :

$$
\begin{array}{rll}
-u^{\prime \prime}+4 u=S & ; & x \in[-1 ; 1] \\
u(-1)=0 & ; & u(1)=0 \\
S(x<0)=1 & ; & S(x>0)=0 \tag{6}
\end{array}
$$

The solution is given by :

$$
\begin{align*}
u(x<0) & =\frac{1}{4}-\left(\frac{e^{2}}{4}+B^{-} e^{4}\right) \exp (2 x)+B^{-} \exp (-2 x) \tag{7}\\
u(x>0) & =B^{+}\left(\exp (-2 x)-\frac{1}{e^{4}} \exp (2 x)\right) \tag{8}\\
B^{-} & =-\frac{1}{8\left(1+e^{2}\right)}-\frac{e^{2}}{8\left(1+e^{4}\right)} \tag{9}\\
B^{+} & =\frac{e^{4}}{8}\left(\frac{e^{2}}{\left(1+e^{4}\right)}-\frac{1}{\left(1+e^{2}\right)}\right) \tag{10}
\end{align*}
$$

IV. SUGGESTED STEPS

- Verify that Gibbs phenomenon appear when using a single domain method.
- Implement one or more if the multi-domain solvers (Tau, Homogeneous solutions or variationnal).
- Check that exponential convergence to the solution is recovered.

