## I. THE PROBLEM

We propose to solve the system for a static spherically symmetric Yang-Mills-Higgs monopole. Using the minimal spherically symmetric Ansatz, the solution is described by two functions : one describing the gauge field $W$ and one the Higgs field $H$. Those two functions depend only on $r$ and obey a system of two coupled equations :

$$
\begin{align*}
W^{\prime \prime} & =\frac{W\left(W^{2}-1\right)}{r^{2}}+W H^{2}  \tag{1}\\
H^{\prime \prime}+\frac{2}{r} H^{\prime} & =2 \frac{W^{2} H}{r^{2}}+\frac{\beta^{2}}{2} H\left(H^{2}-1\right) \tag{2}
\end{align*}
$$

The only parameter of the solution is $\beta$ constraining the mass of the Higgs field. We will restrict ourselves to the cases $0<\beta<\infty$.

## II. ASYMPTOTIC BEHAVIORS

Near the origin, one has the following behaviors :

$$
\begin{align*}
W & =1-a r^{2}+\mathcal{O}\left(r^{4}\right)  \tag{3}\\
H & =b r+\mathcal{O}\left(r^{3}\right) \tag{4}
\end{align*}
$$

At infinity, the fields converge exponentially, i.e. $W$ and $h=H-1$ go to zero exponentially.

## III. SYSTEM IN VARIOUS DOMAINS

- In the nucleus : one uses $w=\frac{W-1}{r}$ and $H$ (odd functions near the origin) and rewrite the system as :

$$
\begin{align*}
& \Delta_{l=1} w \equiv w^{\prime \prime}+\frac{2}{r} w^{\prime}-2 \frac{w}{r^{2}}=w^{3}+3 \frac{w^{2}}{r}+(1+r w) \frac{H^{2}}{r}  \tag{5}\\
& \Delta_{l=1} H \equiv H^{\prime \prime}+\frac{2}{r} H^{\prime}-2 \frac{H}{r^{2}}=2 H\left(w^{2}+2 \frac{w}{r}\right)+\frac{\beta^{2}}{2} H\left(H^{2}-1\right) \text {. } \tag{6}
\end{align*}
$$

- In the shells : one uses $W$ and $H$ but rewrites the system to make the Helmholtz operators appear (optional) :

$$
\begin{align*}
\Delta_{l=0} W-W & =W\left(H^{2}-1\right)+\frac{W\left(W^{2}-1\right)}{r^{2}}+2 \frac{W^{\prime}}{r}  \tag{7}\\
\Delta_{l=0} H-\beta^{2} H & =2 \frac{W^{2} H}{r^{2}}+\frac{\beta^{2}}{2} H\left(H^{2}-3\right) \tag{8}
\end{align*}
$$

- In the external domain : one works with $W$ and $h=H-1$ and make Helmholtz operators appear :

$$
\begin{align*}
& \Delta_{l=0} W-W=h W(h+2)+\frac{W\left(W^{2}-1\right)}{r^{2}}+2 \frac{W^{\prime}}{r}  \tag{9}\\
& \Delta_{l=0} h-\beta^{2} h=2 \frac{W^{2}(h+1)}{r^{2}}+\frac{\beta^{2}}{2} h^{2}(h+3) \tag{10}
\end{align*}
$$

## IV. SUGGESTED STEPS

- Look at the proposed Monopole class that contains $W, H, w$ and $h$ (each of them being a Scalar).
- Implement functions that initialize $W$ and $H$, with the right behaviors and basis. Plot the results.
- Implement functions that go from $W$ to $w$ and from $H$ to $h$ and conversely. Plot the various functions.
- Compute the sources in various domains and plot them.
- Setup the main iteration loop, based on Param_elliptic class.
- For various moderate values of $\beta$, compute $a$ and $b$ appearing in Eqs. (3) and (4).
- Try to go to high values of $\beta$.


## V. SOLVING THE SYSTEM ON TWO GRIDS

For high values of $\beta$, one can show that $H$ varies on a relative length scale $\propto 1 / \beta$ whereas $W$ varies always on length of the order unity. So, for high values of $\beta$, those two functions vary on very different length scales, causing the code to crash. To cope with that, one can use two grids :

- one on scales of the order 1 , used to solve the equation for $W$.
- one on scales of the order $1 / \beta$, used to solve the equation for $H$

This can be implemented by describing all the fields ( $W, w, H$ and $h$ ) on two sets of grids. One can go from one grid to the other by using the Scalar::import() function. Be careful : this should only be used with continuous functions, to avoid Gibbs phenomenon. Verify that the use of two grids enables to go to very high values of $\beta$.

