I. WAVE EQUATION

The aim is to solve the three-dimensional homogeneous wave equation $\square \phi=0$ in a sphere of radius R, using spherical coordinates:

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial^{2} \phi}{\partial r^{2}}-\frac{2}{r} \frac{\partial \phi}{\partial r}-\frac{\Delta_{\theta \varphi} \phi}{r^{2}}=0 \tag{1}
\end{equation*}
$$

Here, $\Delta_{\theta \varphi}$ is the angular part of the Laplacian. In what follows $c=1$ is assumed. There shall be possibly three types of boundary conditions (BC) to be implemented:

1. Homogeneous $\mathrm{BC}: \phi(r=R)=0$, which models the reflection on the boundary.
2. Sommerfeld $\mathrm{BC}: \partial(r \phi) / \partial t+\partial(r \phi) /\left.\partial r\right|_{r=R}=0$, which models a transparent boundary (at least for $\ell=0$ wave modes).
3. Enhanced outgoing $\mathrm{BC}: \partial(r \phi) / \partial t+\partial(r \phi) /\left.\partial r\right|_{r=R}=\xi(\theta, \varphi)$, which is analogous to the Sommerfeld BC, but is also transparent to $\ell=1,2$ wave modes. The function $\xi(\theta, \varphi)$ verifies a wave-like equation on the boundary (see Sec. VI).

II. EXPLICIT SOLVER

The constant time-step is noted $d t$ and $\phi^{J}=\phi(J \times d t)$, where the spatial coordinates are skipped. The simple forward Euler scheme writes:

$$
\begin{equation*}
\phi^{J+1}=2 \phi^{J}-\phi^{J-1}+d t^{2} \Delta \phi^{J}+O\left(d t^{4}\right) \tag{2}
\end{equation*}
$$

This scheme can be safely used for small time-steps and spherical symmetry ($\ell=0$ only).
Second-order time discretisation of the Sommerfeld BC writes:

$$
\begin{equation*}
\left(\frac{3}{2 d t}+\frac{1}{R}\right) \phi^{J+1}(R)+\left.\frac{\partial \phi^{J+1}}{\partial r}\right|_{r=R}=\frac{4 \phi^{J}(R)-\phi^{J-1}(R)}{2 d t}+O\left(d t^{2}\right) \tag{3}
\end{equation*}
$$

III. SUGGESTED STEPS

- Setup a spherically-symmetric one-domain grid (Mg3d, but only nucleus), with a mapping and associated r coordinate.
- Define an initial profile for ϕ^{0} and ϕ^{1} (e.g. the same Gaussian one for both), which should be of type Scalar.
- Make a time loop for 2-3 grid-crossing times with a graphical output (with the function des_meridian, see Lorene documentation).
- Doing so, the problem is ill-posed and therefore unstable. Add the BC requirement (homogeneous or Sommerfeld BC) by modifying at each time-step the value in physical space of the point situated at $r=R$, with the method Scalar::set_outer_boundary. Note that the initial profile must satisfy the BC!
- Make runs with varying the time-step to see the Courant limitation.

IV. IMPLICIT SOLVER

The 3D extension of the previous approach is very uneasy, it is therefore recommended to used implicit schemes, namely the Crank-Nicholson one:

$$
\begin{equation*}
\left[1-\frac{d t^{2}}{2} \Delta\right] \phi^{J+1}=2 \phi^{J}-\phi^{J-1} \frac{d t^{2}}{2} \Delta \phi^{J-1} \tag{4}
\end{equation*}
$$

The angular part of the Laplacian $\Delta_{\theta \varphi}$ admits spherical harmonics as eigen-functions:

$$
\begin{equation*}
\Delta_{\theta \varphi} Y_{\ell}^{m}=-\ell(\ell+1) Y_{\ell}^{m} \tag{5}
\end{equation*}
$$

so that when developing ϕ onto spherical harmonics, the operator in (4) becomes

$$
\begin{equation*}
1-\frac{d t^{2}}{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\ell(\ell+1)}{r^{2}}\right) \tag{6}
\end{equation*}
$$

for each harmonic.

V. SUGGESTED STEPS

- Take a symmetric grid (in θ and φ), with x and y coordinate fields, to define an $\ell \leq 2$ initial profile (e.g. $x y \times$ a Gaussian).
- At every time-step after transforming to Y_{ℓ}^{m}, make a loop on ℓ, m (use Base_val: :give_quant_numbers to get ℓ and m) and build the matrix associated with the operator (6), acting on coefficient space, using elementary operators Diff. Be careful to take into account the mapping!
- Within the same loop on ℓ, m, fill a Tbl with the coefficients of the right-hand side of (4).
- Add the BC and a regularity condition (when necessary) using the tau method.
- Invert the system to get ϕ^{J+1}, go back to Fourier coefficients and, eventually, compute the energy stored in the grid:

$$
\begin{equation*}
E=\int\left(\frac{\partial \phi}{\partial t}\right)^{2}+(\nabla \phi)^{2} \tag{7}
\end{equation*}
$$

using the method Scalar: :integrale.

VI. ENHANCED BOUNDARY CONDITIONS

These are a modification of the Sommerfeld BC (Sec. I), with $\xi(\theta, \varphi)$ verifying:

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}-\frac{3}{4 R^{2}} \Delta_{\theta \varphi} \xi+\frac{3}{R} \frac{\partial \xi}{\partial t}+\frac{3 \xi}{2 R^{2}}=\frac{1}{2 R^{2}} \Delta_{\theta \varphi}\left(\frac{\phi}{R}-\left.\frac{\partial \phi}{\partial r}\right|_{r=R}\right) \tag{8}
\end{equation*}
$$

When developing ξ and ϕ onto Y_{ℓ}^{m} and using again Crank-Nicholson time scheme:

$$
\begin{aligned}
\frac{\xi_{\ell m}^{J+1}-2 \xi_{\ell m}^{J}+\xi_{\ell m}^{J-1}}{d t^{2}} & +\frac{3}{8} \frac{\ell(\ell+1)}{R^{2}}\left(\xi_{\ell m}^{J+1}+\xi_{\ell m}^{J-1}\right)+\frac{3}{R} \frac{\xi_{\ell m}^{J+1}-\xi_{\ell m}^{J-1}}{2 d t} \\
& +\frac{3}{4 R^{2}}\left(\xi_{\ell m}^{J+1}+\xi_{\ell m}^{J-1}\right)=-\frac{\ell(\ell+1)}{2 R^{2}}\left(\frac{\phi_{\ell m}^{J}(R)}{R}-\left.\frac{\partial \phi_{\ell m}^{J}}{\partial r}\right|_{r=R}\right)
\end{aligned}
$$

one gets a simple numeric linear equation in terms of $\xi_{\ell m}^{J+1}$, which is to be solved at every time-step.
Implement this BC and test it against the Sommerfeld one either by doubling the grid, or by looking at the energy left inside the grid.

