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I. WAVE EQUATION

The aim is to solve the three-dimensional homogeneous wave equation �φ = 0 in a sphere of radius R, using
spherical coordinates:
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Here, ∆θϕ is the angular part of the Laplacian. In what follows c = 1 is assumed. There shall be possibly three types
of boundary conditions (BC) to be implemented:

1. Homogeneous BC : φ(r = R) = 0, which models the reflection on the boundary.

2. Sommerfeld BC : ∂(rφ)/∂t + ∂(rφ)/∂r|r=R = 0, which models a transparent boundary (at least for ` = 0 wave
modes).

3. Enhanced outgoing BC : ∂(rφ)/∂t + ∂(rφ)/∂r|r=R = ξ(θ, ϕ), which is analogous to the Sommerfeld BC, but is
also transparent to ` = 1, 2 wave modes. The function ξ(θ, ϕ) verifies a wave-like equation on the boundary (see
Sec. VI).

II. EXPLICIT SOLVER

The constant time-step is noted dt and φJ = φ(J × dt), where the spatial coordinates are skipped. The simple
forward Euler scheme writes:

φJ+1 = 2φJ − φJ−1 + dt2∆φJ + O(dt4). (2)

This scheme can be safely used for small time-steps and spherical symmetry (` = 0 only).
Second-order time discretisation of the Sommerfeld BC writes:(
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III. SUGGESTED STEPS

• Setup a spherically-symmetric one-domain grid (Mg3d, but only nucleus), with a mapping and associated r
coordinate.

• Define an initial profile for φ0 and φ1 ( e.g. the same Gaussian one for both), which should be of type Scalar.

• Make a time loop for 2-3 grid-crossing times with a graphical output (with the function des meridian, see
Lorene documentation).

• Doing so, the problem is ill-posed and therefore unstable. Add the BC requirement (homogeneous or Sommerfeld
BC) by modifying at each time-step the value in physical space of the point situated at r = R, with the method
Scalar::set outer boundary. Note that the initial profile must satisfy the BC!

• Make runs with varying the time-step to see the Courant limitation.

IV. IMPLICIT SOLVER

The 3D extension of the previous approach is very uneasy, it is therefore recommended to used implicit schemes,
namely the Crank-Nicholson one: [
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The angular part of the Laplacian ∆θϕ admits spherical harmonics as eigen-functions:
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so that when developing φ onto spherical harmonics, the operator in (4) becomes

1− dt2

2

(
∂2

∂r2
+

2
r

∂

∂r
− `(` + 1)

r2

)
(6)

for each harmonic.

V. SUGGESTED STEPS

• Take a symmetric grid (in θ and ϕ), with x and y coordinate fields, to define an ` ≤ 2 initial profile (e.g. xy×
a Gaussian).

• At every time-step after transforming to Y m
` , make a loop on `,m (use Base val::give quant numbers to get

` and m) and build the matrix associated with the operator (6), acting on coefficient space, using elementary
operators Diff. Be careful to take into account the mapping!

• Within the same loop on `,m, fill a Tbl with the coefficients of the right-hand side of (4).

• Add the BC and a regularity condition (when necessary) using the tau method.

• Invert the system to get φJ+1, go back to Fourier coefficients and, eventually, compute the energy stored in the
grid:
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using the method Scalar::integrale.

VI. ENHANCED BOUNDARY CONDITIONS

These are a modification of the Sommerfeld BC (Sec. I), with ξ(θ, ϕ) verifying:
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When developing ξ and φ onto Y m
` and using again Crank-Nicholson time scheme:
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one gets a simple numeric linear equation in terms of ξJ+1
`m , which is to be solved at every time-step.

Implement this BC and test it against the Sommerfeld one either by doubling the grid, or by looking at the energy
left inside the grid.


