Lorene initial data for binary neutron stars

Contents

1 Bin_NS - Binary neutron star configuration on a Cartesian grid. ... 5
Class Graph 25

Lorene initial data for binary neutron stars

Lorene data represents quasistationary binary neutron stars configurations, obtained by

- E. Gourgoulhon, P. Grandclément, K. Taniguchi, J.-A. Marck, S. Bonazzola, Phys. Rev. D 63, 064029 (2001)
- K. Taniguchi, E. Gourgoulhon, S. Bonazzola, Phys. Rev. D 64, 064012 (2001)
- K. Taniguchi, E. Gourgoulhon, Phys. Rev. D 65, 044027 (2002)
- K. Taniguchi, E. Gourgoulhon, Phys. Rev. D 66, 104019 (2002)
- K. Taniguchi, E. Gourgoulhon, Phys. Rev. D 68, 124025 (2003)
- M. Bejger, D. Gondek-Rosinska, E. Gourgoulhon, P. Haensel, K. Taniguchi, J.L. Zdunik, Astron. Astrophys. 431, 297 (2005)

The exportation of this data, computed by means of LORENE on a multidomain spectral grid, onto a Cartesian grid (e.g. for CACTUS), is performed by means of the C++ class Bin_NS. The class Bin_NS comes along with LORENE distribution. This class is very simple, with all data members being public. A typical example of use is the following one

```
* // Define the Cartesian grid by means of the arrays xg, yg, zg:
```

* for (int i=0; i<nb_points; i++) \{
* $\quad \mathrm{xg}[\mathrm{i}]=\ldots$
* $\quad \mathrm{yg}[\mathrm{i}]=\ldots$
* $\mathrm{zg}[\mathrm{i}]=\ldots$
* \}
*
* // Read the file containing the spectral data and evaluate
* // all the fields on the Cartesian grid :
*
* Bin_NS binary_system(nb_points, xg, yg, zg, datafile) ;
*
* // Extract what you need :
* double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
*
* double* shift_x = binary_system.beta_x ; // x comp. of shift vector
*
* ...
*

```
* // Save everything in an ASCII file :
* ofstream file_ini("ini.d") ;
* binary_system.save_form(file_ini) ;
* file_ini.close() ;
*
*
```


1

class
 Bin_NS

Binary neutron star configuration on a Cartesian grid.

Public Members				
1.1	char	eos_name1 [100]	Eos name star 1	10
1.2	double	gamma_poly1	Adiabatic index of EOS 1 if it is polytropic (0 otherwise)	10
1.3	double	kappa_poly1	Polytropic constant of EOS 1 if it is polytropic (0 otherwise) [unit: $\left.\rho_{\mathrm{nuc}} c^{2} / n_{\mathrm{nuc}}^{\gamma}\right]$	10
1.4	char	eos_name2 [100]	Eos name star 2	11
1.5	double	gamma_poly2	Adiabatic index of EOS 2 if it is polytropic (0 otherwise)	11
1.6	double	kappa_poly2	Polytropic constant of EOS 2 if it is polytropic (0 otherwise) [unit: $\rho_{\text {nuc }} c^{2} / n_{\text {nuc }}^{\gamma}$]	11
1.7	double	omega	Orbital angular velocity [unit: $\mathrm{rad} / \mathrm{s}]$	11
1.8	double	dist	Distance between the centers (maxiumum density) of the two neutron stars [unit: km]	12
1.9	double	dist_mass	Distance between the center of masses of two neutron stars [unit: km]	12
1.10	double	mass1_b	Baryon mass of star 1 (less massive star) [unit: M_{\odot}]	12
1.11	double	mass2_b	Baryon mass of star 2 (massive star) [unit: M_{\odot}]	12
1.12	double	mass_adm	ADM mass of the binary system [unit: M_{\odot}]	13
1.13	double	angu_mom	Total angular momentum of the binary system [unit: $G M_{\odot}^{2} / c$] ..	13

1.14	double	rad1_x_comp	Coordinate radius of star 1 (less massive star) parallel to the x axis toward the companion star [unit: km]
1.15	double	rad1_y	Coordinate radius of star 1 (less massive star) parallel to the y axis [unit: km]
1.16	double	rad1_z	Coordinate radius of star 1 (less massive star) parallel to the z axis [unit: km]
1.17	double	rad1_x_opp	Coordinate radius of star 1 (less massive star) parallel to the x axis opposite to the companion star [unit: km]
1.18	double	rad2_x_comp	Coordinate radius of star 2 (mas sive star) parallel to the x axis toward the companion star [unit km]
1.19	double	rad2_y	Coordinate radius of star 2 (mas sive star) parallel to the y axis [unit: km]
1.20	double	rad2_z	Coordinate radius of star 2 (mas sive star) parallel to the z axis [unit: km]
1.21	double	rad2_x_opp	Coordinate radius of star 2 (mas sive star) parallel to the x axis opposite to the companion star [unit: km]
1.22	int	np	Total number of grid points
1.23	double*	x x	1-D array storing the values of co ordinate x of the np grid points [unit: km]
1.24	double*	уу	1-D array storing the values of co ordinate y of the np grid points [unit: km]
1.25	double*	zz	1-D array storing the values of coordinate z of the np grid points [unit: km]
1.26	double*	nnn	Lapse function N at the np grid points (1-D array)

1.27	double*	beta_x	Component β^{x} of the shift vecto of non rotating coordinates [unit c]
1.28	double*	beta_y	Component β^{y} of the shift vecto of non rotating coordinates [unit c]
1.29	double*	beta_z	Component β^{z} of the shift vector of non rotating coordinates [unit c]
1.30	double*	g_xx	Metric coefficient $\gamma_{x x}$ at the grid points (1-D array)
1.31	double*	g_xy	Metric coefficient $\gamma_{x y}$ at the grid points (1-D array)
1.32	double*	g_xz	Metric coefficient $\gamma_{x z}$ at the grid points (1-D array)
1.33	double*	g_yy	Metric coefficient $\gamma_{y y}$ at the grid points (1-D array)
1.34	double*	g-yz	Metric coefficient $\gamma_{y z}$ at the grid points (1-D array)
1.35	double*	g_ZZ	Metric coefficient $\gamma_{z z}$ at the grid points (1-D array)
1.36	double*	k_xx	Component $K_{x x}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
1.37	double*	k_xy	Component $K_{x y}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
1.38	double*	k_xz	Component $K_{x z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
1.39	double*	k_y ${ }^{\text {d }}$	Component $K_{y y}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
1.40	double*	k_yz	Component $K_{y z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
1.41	double*	k_zz	Component $K_{z z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]

1.42	double*	nbar	Baryon density in the fluid frame at the np grid points (1-D array) [unit: $\mathrm{kg} \mathrm{m}^{-3}$]
1.43	double*	ener_spec	Specific internal energy at the np grid points (1-D array) [unit: c^{2}]
1.44	double*	u_euler x	21 Component U^{x} of the fluid 3velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]
1.45	double*	u_euler_y	Component U^{y} of the fluid 3velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]
1.46	double*	u_euler_z	Component U^{z} of the fluid 3velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]
1.47		Bin_NS (int nbpoints, const double* xi, const double* yi, const double* zi, const char* filename)	
1.48		Bin_NS (FILE*)	Constructor from a binary file (previously created by save_bin)
1.49		Bin_NS (ifstream\&)	
			Constructor from a formatted file (previously created by save_form)
1.50		~Bin_NS ()	Destructor
1.52	void	save_bin (FILE*)	const
			Save in a binary file.
1.53	void	save_form (ofstream\&) const	
			Save in a formatted file.

Private Members

1.51 void alloc_memory () $\begin{aligned} & \text { Allocate the memory for the arrays } \\ & g_{-} i j, k_{-} i j, \text { etc } \ldots\end{aligned}$

Binary neutron star configuration on a Cartesian grid.
A binary black hole system is constructed on a Cartesian grid from data stored in a file resulting from a computation by Taniguchi and Gourgoulhon.

Importation of Lorene data is performed by means of the constructor Bin_NS: :Bin_NS (int, const double*, const double*, const double*, const char*). This constructor takes general arrays for the location of the Cartesian coordinates (x, y, z), i.e. it does not assume that the grid is a uniform one. Note also that these arrays are 1-D, as well as all the metric fields, in order to be use with any ordering of the 3-D storage.

This class is very simple, with all data members being public. A typical example of use is the following one

```
* // Define the Cartesian grid by means of the arrays xg, yg, zg:
* for (int i=0; i<nb_points; i++) {
* xg[i] = ...
* yg[i] = ...
* }\textrm{zg}[\textrm{i}]=..
* }
*
* // Read the file containing the spectral data and evaluate
* // all the fields on the Cartesian grid :
*
* Bin_NS binary_system(nb_points, xg, yg, zg, datafile) ;
*
* // Extract what you need :
* *
* double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
*
* double* shift_x = binary_system.beta_x ; // x comp. of shift vector
*
* ...
*
* // Save everything in an ASCII file :
* ofstream file_ini("ini.d") ;
* binary_system.save_form(file_ini) ;
* file_ini.close() ;
*
*
```

Version: $\$ I d:$ bin_ns.h,v 1.5 2010/07/14 16:47:30
e_gourgoulhon Exp \$
1.1
char eos_name1 [100]

Eos name star 1

Eos name star 1

1.2

double gamma_poly1

Adiabatic index of EOS 1 if it is polytropic (0 otherwise)

Adiabatic index of EOS 1 if it is polytropic (0 otherwise)
1.3
double kappa_poly1

Polytropic constant of EOS 1 if it is polytropic (0 otherwise) [unit: $\left.\rho_{\text {nuc }} c^{2} / n_{\text {nuc }}^{\gamma}\right]$

Polytropic constant of EOS 1 if it is polytropic (0 otherwise) [unit: $\left.\rho_{\text {nuc }} c^{2} / n_{\text {nuc }}^{\gamma}\right]$

1.4

char eos_name2 [100]

Eos name star 2

Eos name star 2
1.5
double gamma_poly2

Adiabatic index of EOS 2 if it is polytropic (0 otherwise)

Adiabatic index of EOS 2 if it is polytropic (0 otherwise)

1.6

double kappa_poly2

Polytropic constant of EOS 2 if it is polytropic (0 otherwise) [unit: $\left.\rho_{\mathrm{nuc}} c^{2} / n_{\mathrm{nuc}}^{\gamma}\right]$

Polytropic constant of EOS 2 if it is polytropic (0 otherwise) [unit: $\left.\rho_{\mathrm{nuc}} c^{2} / n_{\text {nuc }}^{\gamma}\right]$
1.7
double omega

Orbital angular velocity [unit: rad/s]

Orbital angular velocity [unit: rad/s]

1.8

double dist

Distance between the centers (maxiumum density) of the two neutron stars
[unit: $k m$]

Distance between the centers (maxiumum density) of the two neutron stars [unit: km]

1.9

double dist_mass

Distance between the center of masses of two neutron stars [unit: km]

Distance between the center of masses of two neutron stars [unit: km]

1.10

double mass1_b

Baryon mass of star 1 (less massive star) [unit: M_{\odot}]

Baryon mass of star 1 (less massive star) [unit: M_{\odot}]
1.11
double mass2_b

Baryon mass of star 2 (massive star) [unit: M_{\odot}]

Baryon mass of star 2 (massive star) [unit: M_{\odot}]

1.12

double mass_adm

ADM mass of the binary system [unit: M_{\odot}]

ADM mass of the binary system [unit: M_{\odot}]
1.13
double angu_mom

Total angular momentum of the binary system [unit: $G M_{\odot}^{2} / c$]

Total angular momentum of the binary system [unit: $G M_{\odot}^{2} / c$]

1.14

double rad1_x_comp

Coordinate radius of star 1 (less massive star) parallel to the x axis toward the companion star [unit: km]

Coordinate radius of star 1 (less massive star) parallel to the x axis toward the companion star [unit: km]
1.15
double rad1_y

Coordinate radius of star 1 (less massive star) parallel to the y axis [unit: km]

Coordinate radius of star 1 (less massive star) parallel to the y axis [unit: km]

1.16

double rad1_z

Coordinate radius of star 1 (less massive star) parallel to the z axis [unit: km]

Coordinate radius of star 1 (less massive star) parallel to the z axis [unit: km]

1.17

double rad1_x_opp

Coordinate radius of star 1 (less massive star) parallel to the x axis opposite to the companion star [unit: km]

Coordinate radius of star 1 (less massive star) parallel to the x axis opposite to the companion star [unit: km]

1.18

double rad2_x_comp

Coordinate radius of star 2 (massive star) parallel to the x axis toward the companion star [unit: km]

Coordinate radius of star 2 (massive star) parallel to the x axis toward the companion star [unit: km]

1.19

double rad2_y

Coordinate radius of star 2 (massive star) parallel to the y axis [unit: km]

Coordinate radius of star 2 (massive star) parallel to the y axis [unit: km]

1.20

double rad2_z

Coordinate radius of star 2 (massive star) parallel to the z axis [unit: $k m$]

Coordinate radius of star 2 (massive star) parallel to the z axis [unit: km]
1.21
double rad2_x_opp

Coordinate radius of star 2 (massive star) parallel to the x axis opposite to the companion star [unit: km]

Coordinate radius of star 2 (massive star) parallel to the x axis opposite to the companion star [unit: km]

1.22

int np

Total number of grid points

Total number of grid points
1.23
double* $\mathbf{x x}$

1-D array storing the values of coordinate x of the np grid points [unit: km]

1-D array storing the values of coordinate x of the np grid points [unit: km]

1.24

double* yy

1-D array storing the values of coordinate y of the np grid points [unit: km]

1-D array storing the values of coordinate y of the np grid points [unit: km]
1.25
double* zz

1-D array storing the values of coordinate z of the np grid points [unit: km]

1-D array storing the values of coordinate z of the np grid points [unit: km]

1.26

double* nnn

Lapse function N at the np grid points (1-D array)

Lapse function N at the np grid points (1-D array)

1.27

double* beta_x

Component β^{x} of the shift vector of non rotating coordinates [unit: c]

Component β^{x} of the shift vector of non rotating coordinates [unit: c]

1.28

```
double* beta_y
```

Component β^{y} of the shift vector of non rotating coordinates [unit: c]

Component β^{y} of the shift vector of non rotating coordinates [unit: c]

1.29

double* beta_z

Component β^{z} of the shift vector of non rotating coordinates [unit: c]

Component β^{z} of the shift vector of non rotating coordinates [unit: c]
1.30
double* $\mathbf{g} \mathbf{x x}$

Metric coefficient $\gamma_{x x}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x x}$ at the grid points (1-D array)

1.31

double* g_xy

Metric coefficient $\gamma_{x y}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x y}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x z}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x z}$ at the grid points (1-D array)
1.33
double* g_yy

Metric coefficient $\gamma_{y y}$ at the grid points (1-D array)

Metric coefficient $\gamma_{y y}$ at the grid points (1-D array)
double* ${ }^{\text {g_yz }}$

Metric coefficient $\gamma_{y z}$ at the grid points (1-D array)

Metric coefficient $\gamma_{y z}$ at the grid points (1-D array)
1.35
double* g_zz

Metric coefficient $\gamma_{z z}$ at the grid points (1-D array)

Metric coefficient $\gamma_{z z}$ at the grid points (1-D array)

1.36

double* \mathbf{k} _xx

Component $K_{x x}$ of the extrinsic curvature at the grid points (1-D array) [unit: $\mathrm{c} / \mathrm{km}]$

Component $K_{x x}$ of the extrinsic curvature at the grid points (1-D array) [unit: c / km]

1.37

double* k_xy

Component $K_{x y}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / k m]$

Component $K_{x y}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]

Component $K_{x z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $\mathrm{c} / \mathrm{km}]$

Component $K_{x z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c / km]

1.39

double* k_yy

Component $K_{y y}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / \mathrm{km}]$

Component $K_{y y}$ of the extrinsic curvature at the grid points (1-D array) [unit: c / km]

1.40

double* k_yz

Component $K_{y z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / k m]$

Component $K_{y z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/km]
1.41

$$
\text { double* }{ }^{*} \text { _zz }
$$

Component $K_{z z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / \mathrm{km}]$

Component $K_{z z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c / km]

1.42

double* nbar

Baryon density in the fluid frame at the np grid points (1-D array) [unit: $\mathrm{kg} \mathrm{m}{ }^{-3}$]

Baryon density in the fluid frame at the np grid points (1-D array) [unit: $\mathrm{kg} \mathrm{m}^{-3}$]
1.43
double* ener_spec

Specific internal energy at the np grid points (1-D array) [unit: c^{2}]

Specific internal energy at the np grid points (1-D array) [unit: c^{2}]

1.44

double* u_euler_x

Component U^{x} of the fluid 3-velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]

Component U^{x} of the fluid 3 -velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]
1.45
double* u_euler_y

Component U^{y} of the fluid 3-velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]

This page was generated with the help of DOC ++
http://docpp.sourceforge.net
July 14, 2010

Component U^{y} of the fluid 3 -velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]

1.46

double* u_euler_z

Component U^{z} of the fluid 3-velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]

Component U^{z} of the fluid 3 -velocity with respect to the Eulerian observer, at the np grid points (1-D array) [unit: c]

1.47

Bin_NS (int nbpoints, const double* xi, const double* yi, const double* zi, const char* filename)

Constructor from Lorene spectral data.

Constructor from Lorene spectral data.
This constructor takes general arrays xi, yi, zi for the location of the Cartesian coordinates (x, y, z), i.e. it does not assume that the grid is a uniform one. These arrays are 1-D to deal with any ordering of a 3-D storage.

Parameters:	nbpoints xi yi zi filename	[input] Total number of grid points [input] 1-D array (size nbpoints) storing thevalues of coordinate x of the grid points [unit: km] [input] 1-D array (size nbpoints) storing thevalues of coordinate y of the grid points [unit: km] [input] 1-D array (size nbpoints) storing thevalues of coordinate z of the grid points [unit: km] [input] Name of the (binary) file containing the resultof a computation by means of the multi-domain spectral method.

1.48

Bin_NS (FILE*)

Constructor from a binary file (previously created by save_bin)

Constructor from a binary file (previously created by save_bin)
1.49

Bin_NS (ifstream\&)

Constructor from a formatted file (previously created by save_form)

Constructor from a formatted file (previously created by save_form)
1.50
${ }^{\sim}$ Bin_NS ()

Destructor
1.52
void save_bin (FILE*) const

Save in a binary file.

Save in a binary file. This file can be subsenquently read by the evolution code, or by the constructor Bin_NS: :Bin_NS (FILE*).

1.53

void save_form (ofstream\&) const

Save in a formatted file.

Save in a formatted file. This file can be subsenquently read by the evolution code, or by the constructor Bin_NS: : Bin_NS(ifstream\&).
1.51
void alloc_memory ()

Allocate the memory for the arrays $g_{-} i j, k_{-} i j$, etc

Allocate the memory for the arrays g_ij, k_ij, etc

Class Graph

1
Bin_NS

