Meudon initial data for binary black holes

Contents

1 Bin_BH - Binary black hole configuration on a Cartesian grid. .. 4
Class Graph 19

Meudon initial data for binary black holes

Meudon data represents quasistationary binary black configurations, obtained by P. Grandclément, E. Gourgoulhon \& S. Bonazzola, Phys. Rev. D 65, 044021 (2002).

The exportation of this data, computed by means of LORENE on a multidomain spectral grid, onto a Cartesian grid (e.g. for CACTUS), is performed by means of the C++ class Bin_BH. The class Bin_BH comes along with LORENE distribution. This class is very simple, with all data members being public. A typical example of use is the following one

```
* // Define the Cartesian grid by means of the arrays xg, yg, zg:
```

* for (int i=0; i<nb_points; i++) \{
* $\quad x g[i]=\ldots$
* $\quad \mathrm{yg}[\mathrm{i}]=\ldots$
* $\quad \mathrm{zg}[\mathrm{i}]=\ldots$
* \}
*
* // Read the file containing the spectral data and evaluate
* // all the fields on the Cartesian grid :
*
* Bin_BH binary_system(nb_points, xg, yg, zg, fill, datafile) ;
*
* // Extract what you need :
*
* double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
*
* double* shift_x = binary_system.beta_x ; // x comp. of shift vector
*
* ...
*
* // Save everything in an ASCII file :
* ofstream file_ini("ini.d") ;
* binary_system.save_form(file_ini) ;
* file_ini.close() ;
*
*

1

class Bin_BH

Binary black hole configuration on a Cartesian grid.

Public Members			
1.1	double	omega	Orbital angular velocity [unit: $\left.a^{-1}\right]$
1.2	double	dist	Distance between the coordinate centers of two black holes [unit: a]
1.3	double	radius2	Coordinate radius of the apparent horizon (throat) of black hole 2 [unit: a].
1.4	int	np	Total number of grid points
1.5	double*	x \mathbf{x}	1-D array storing the values of coordinate x of the np grid points [unit: a]
1.6	double*	уу	1-D array storing the values of coordinate y of the np grid points [unit: a]
1.7	double*	zZ	1-D array storing the values of coordinate z of the np grid points [unit: a]
1.8	double*	nnn	Lapse function N at the np grid points (1-D array)
1.9	double*	beta_x	Component β^{x} of the shift vector of corotating coordinates [unit: c]
1.10	double*	beta_y	10 Component β^{y} of the shift vector of corotating coordinates [unit: c]
1.11	double*	beta_z	10 Component β^{z} of the shift vector of corotating coordinates [unit: c]
1.12	double*	g_xx	10 Metric coefficient $\gamma_{x x}$ at the grid points (1-D array)

1.13	double*	g_xy	Metric coefficient $\gamma_{x y}$ at the grid points (1-D array)
1.14	double*	g_xz	Metric coefficient $\gamma_{x z}$ at the grid points (1-D array)
1.15	double*	g-yy	Metric coefficient $\gamma_{y y}$ at the grid points (1-D array)
1.16	double*	g-yz	Metric coefficient $\gamma_{y z}$ at the grid points (1-D array)
1.17	double*	g_ZZ	Metric coefficient $\gamma_{z z}$ at the grid points (1-D array)
1.18	double*	k_xx	Component $K_{x x}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/a]
1.19	double*	k_xy	Component $K_{x y}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/a]
1.20	double*	k_xz	Component $K_{x z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/a]
1.21	double*	k_yy	Component $K_{y y}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/a]
1.22	double*	k_yz	Component $K_{y z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/a]
1.23	double*	k_zz	Component $K_{z z}$ of the extrinsic curvature at the grid points (1-D array) [unit: c/a]
1.24	double*	dpsi_x	First derivative $\partial / \partial x$ of the conformal factor Ψ [unit: a^{-1}]
1.25	double*	dpsi_y	First derivative $\partial / \partial y$ of the conformal factor Ψ [unit: a^{-1}]
1.26	double*	dpsi_z	First derivative $\partial / \partial z$ of the conformal factor Ψ [unit: a^{-1}]
1.27	double*	d2psi_xx	Second derivative $\partial^{2} / \partial x^{2}$ of the conformal factor Ψ [unit: a^{-2}] .
1.28	double*	d2psi xy	Second derivative $\partial^{2} / \partial x \partial y$ of the conformal factor Ψ [unit: a^{-2}] .

1.29	double*	d2psi_xz	Second derivative $\partial^{2} / \partial x \partial z$ of the conformal factor Ψ [unit: a^{-2}] .
1.30	double*	d2psi-yy	Second derivative $\partial^{2} / \partial y^{2}$ of the conformal factor Ψ [unit: a^{-2}] .
1.31	double*	d2psi_yz	Second derivative $\partial^{2} / \partial y \partial z$ of the conformal factor Ψ [unit: a^{-2}] .
1.32	double*	d2psi_zz	Second derivative $\partial^{2} / \partial z^{2}$ of the conformal factor Ψ [unit: a^{-2}] .
1.33		Bin_BH (int nbpoints, const double* xi, const double* yi, const double* zi, int fill, const char* filename, bool mdiff=false) Constructor from Lorene spectral data.	
1.34		Bin_BH (FILE*)	Constructor from a binary file (previously created by save_bin)
1.35		Bin_BH (ifstream\&) Constructor from a formatted file (previously created by save_form)	
1.36		${ }^{\sim}$ Bin_BH ()	Destructor
1.38	void	save_bin (FILE*) const	
1.39	void	save_form (ofstream\&) const	

Private Members

Binary black hole configuration on a Cartesian grid.
A binary black hole system is constructed on a Cartesian grid from data stored in a file resulting from a computation by Grandclement, Gourgoulhon and Bonazzola, Phys. Rev. D 65, 044021 (2002).

All the quantities are in units derived from the length scale defined by the coordinate radius a of black hole 1 apparent horizon (throat).

Importation of Lorene data is performed by means of the constructor

Bin_BH: :Bin_BH(int, const double*, const double*, const double*, const char*). This constructor takes general arrays for the location of the Cartesian coordinates (x, y, z), i.e. it does not assume that the grid is a uniform one. Note also that these arrays are 1-D, as well as all the metric fields, in order to be use with any ordering of the 3-D storage.

This class is very simple, with all data members being public. A typical example of use is the following one

```
* // Define the Cartesian grid by means of the arrays xg, yg, zg:
* for (int i=0; i<nb_points; i++) {
* xg[i] = ...
* yg[i] = ...
* zg[i] = ...
* }
* // Read the file containing the spectral data and evaluate
* // all the fields on the Cartesian grid :
*
* Bin_BH binary_system(nb_points, xg, yg, zg, fill, datafile) ;
* // Extract what you need
*/ Extract what you need :
* double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
*
* double* shift_x = binary_system.beta_x ; // x comp. of shift vector
*
* ...
* // Save everything in an ASCII file :
*
* ofstream file_ini("ini.d") ;
* binary_system.save_form(file_ini) ;
* file_ini.close() ;
*
*
```

Version: \$Id: bin_bh.h,v 1.10 2010/07/14 16:47:30
e_gourgoulhon Exp \$

1.1

double omega

Orbital angular velocity [unit: a^{-1}]

1.2

double dist

Distance between the coordinate centers of two black holes [unit: a]

Distance between the coordinate centers of two black holes [unit: a]

1.3

double radius2

Coordinate radius of the apparent horizon (throat) of black hole 2 [unit: a].

Coordinate radius of the apparent horizon (throat) of black hole 2 [unit: a]. NB: The coordinate radius of black hole 1 is 1 by definition of the length unit.
1.4
int np

Total number of grid points

Total number of grid points
\square
double* xx

1-D array storing the values of coordinate x of the np grid points [unit: a]

1-D array storing the values of coordinate x of the np grid points [unit: a]
1.6
double* yy

1-D array storing the values of coordinate y of the np grid points [unit: a]

1-D array storing the values of coordinate y of the np grid points [unit: a]
1.7
double* zz

1-D array storing the values of coordinate z of the np grid points [unit: a]

1-D array storing the values of coordinate z of the np grid points [unit: a]
1.8
double* nnn

Lapse function N at the np grid points (1-D array)

Lapse function N at the np grid points (1-D array)

Component β^{x} of the shift vector of corotating coordinates [unit: c]

Component β^{x} of the shift vector of corotating coordinates [unit: c]
1.10
double* beta_y

Component β^{y} of the shift vector of corotating coordinates [unit: c]

Component β^{y} of the shift vector of corotating coordinates [unit: c]
1.11
double* beta_z

Component β^{z} of the shift vector of corotating coordinates [unit: c]

Component β^{z} of the shift vector of corotating coordinates [unit: c]
1.12
double* $\mathbf{g}_{\text {_x }}$

Metric coefficient $\gamma_{x x}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x x}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x y}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x y}$ at the grid points (1-D array)
1.14
double* \mathbf{g} _xz

Metric coefficient $\gamma_{x z}$ at the grid points (1-D array)

Metric coefficient $\gamma_{x z}$ at the grid points (1-D array)
1.15
double* $\mathbf{g}_{-} \mathbf{y y}$

Metric coefficient $\gamma_{y y}$ at the grid points (1-D array)

Metric coefficient $\gamma_{y y}$ at the grid points (1-D array)

1.16

double* g_yz

Metric coefficient $\gamma_{y z}$ at the grid points (1-D array)

Metric coefficient $\gamma_{y z}$ at the grid points (1-D array)

Metric coefficient $\gamma_{z z}$ at the grid points (1-D array)

Metric coefficient $\gamma_{z z}$ at the grid points (1-D array)

1.18

double* k_xx

Component $K_{x x}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$

Component $K_{x x}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$
1.19
double* k_xy

Component $K_{x y}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$

Component $K_{x y}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$
1.20
double* $\mathbf{k}^{\mathbf{x}} \mathbf{x z}$

Component $K_{x z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$

Component $K_{x z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$
1.21
double* k_yy

Component $K_{y y}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$

Component $K_{y y}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$
1.22
double* k_yz

Component $K_{y z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$

Component $K_{y z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$
1.23
double* $\mathbf{k}_{\mathbf{z z}}$

Component $K_{z z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$

Component $K_{z z}$ of the extrinsic curvature at the grid points (1-D array) [unit: $c / a]$
\square
First derivative $\partial / \partial x$ of the conformal factor $\Psi\left[\right.$ unit: a^{-1}]

First derivative $\partial / \partial x$ of the conformal factor Ψ [unit: a^{-1}]

```
double* dpsi_y
```

First derivative $\partial / \partial y$ of the conformal factor $\Psi\left[\right.$ unit: a^{-1}]

First derivative $\partial / \partial y$ of the conformal factor Ψ [unit: a^{-1}]

1.26

double* dpsi_z

First derivative $\partial / \partial z$ of the conformal factor Ψ [unit: a^{-1}]

First derivative $\partial / \partial z$ of the conformal factor Ψ [unit: a^{-1}]

1.27

double* d2psi_xx

Second derivative $\partial^{2} / \partial x^{2}$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^{2} / \partial x^{2}$ of the conformal factor Ψ [unit: a^{-2}]

1.28

```
double* d2psi_xy
```

Second derivative $\partial^{2} / \partial x \partial y$ of the conformal factor $\Psi\left[u n i t: a^{-2}\right]$

Second derivative $\partial^{2} / \partial x \partial y$ of the conformal factor Ψ [unit: a^{-2}]

1.29

double* d2psi_xz

Second derivative $\partial^{2} / \partial x \partial z$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^{2} / \partial x \partial z$ of the conformal factor Ψ [unit: a^{-2}]
1.30
double* d2psi_yy

Second derivative $\partial^{2} / \partial y^{2}$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^{2} / \partial y^{2}$ of the conformal factor Ψ [unit: a^{-2}]

1.31

double* d2psi_yz

Second derivative $\partial^{2} / \partial y \partial z$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^{2} / \partial y \partial z$ of the conformal factor Ψ [unit: a^{-2}]

1.32

```
double* d2psi_zz
```

Second derivative $\partial^{2} / \partial z^{2}$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^{2} / \partial z^{2}$ of the conformal factor Ψ [unit: a^{-2}]
1.33

Bin_BH (int nbpoints, const double* xi, const double* yi, const double* zi, int fill, const char* filename, bool mdiff=false)

Constructor from Lorene spectral data.

Constructor from Lorene spectral data.
This constructor takes general arrays xi, yi, zi for the location of the Cartesian coordinates (x, y, z), i.e. it does not assume that the grid is a uniform one. These arrays are 1-D to deal with any ordering of a 3-D storage.

Parameters:	nbpoints
	xi

yi
zi
fill
fill $=0$: all the fields are set to zero
fill $=1$: the fields are extrapolated from theirvalues "outside" the holes, by mea filename

Constructor from a binary file (previously created by save_bin)

Constructor from a binary file (previously created by save_bin)
1.35

Bin_BH (ifstream\&)

Constructor from a formatted file (previously created by save_form)

Constructor from a formatted file (previously created by save_form)
1.36
~Bin_BH ()

Destructor

1.38

void save_bin (FILE*) const

Save in a binary file.

Save in a binary file. This file can be subsenquently read by the evolution code, or by the constructor Bin_BH::Bin_BH(FILE*).

1.39

void save_form (ofstream\&) const

Save in a formatted file.

Save in a formatted file. This file can be subsenquently read by the evolution code, or by the constructor Bin_BH::Bin_BH(ifstream\&).
1.37
void alloc_memory ()

Allocate the memory for the arrays $g_{-} i j, k_{-} i j$, etc

Allocate the memory for the arrays g_ij, k_ij, etc

Class Graph

1

