Meudon initial data for binary black holes

Contents

1	Bin_BH — Binary black hole configuration on a Cartesian	
	grid	4
	Class Graph	19

This page was generated with the help of $\mathsf{DOC}{++}$ http://docpp.sourceforge.net

Meudon data represents quasistationary binary black configurations, obtained by P. Grandclément, E. Gourgoulhon & S. Bonazzola, Phys. Rev. D 65, 044021 (2002).

The exportation of this data, computed by means of LORENE on a multidomain spectral grid, onto a Cartesian grid (e.g. for CACTUS), is performed by means of the C++ class Bin_BH. The class Bin_BH comes along with LORENE distribution. This class is very simple, with all data members being public. A typical example of use is the following one

```
// Define the Cartesian grid by means of the arrays xg, yg, zg:
*
*
      for (int i=0; i<nb_points; i++) {</pre>
*
            xg[i] = ...
*
            yg[i] = ...
*
            zg[i] = ...
*
      }
*
*
      // Read the file containing the spectral data and evaluate
*
      // all the fields on the Cartesian grid :
*
*
      Bin_BH binary_system(nb_points, xg, yg, zg, fill, datafile) ;
*
*
      // Extract what you need :
*
      double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
*
*
      double* shift_x = binary_system.beta_x ; // x comp. of shift vector
*
*
*
      . . .
*
*
      // Save everything in an ASCII file :
*
*
      ofstream file_ini("ini.d") ;
      binary_system.save_form(file_ini) ;
*
      file_ini.close() ;
*
```

http://docpp.sourceforge.net

class Bin_BH

 $Binary \ black \ hole \ configuration \ on \ a \ Cartesian \ grid.$

Public Members

1.1	double	omega	$\begin{array}{ccc} Orbital & angular & velocity & [unit: \\ a^{-1}] & \dots \end{array}$	8
1.2	double	dist	Distance between the coordinate centers of two black holes [unit: a]	8
1.3	double	radius2	Coordinate radius of the apparent horizon (throat) of black hole 2 [unit: a].	8
1.4	int	np	Total number of grid points	8
1.5	double*	xx	1-D array storing the values of co- ordinate x of the np grid points [unit: a]	9
1.6	double*	уу	1-D array storing the values of co- ordinate y of the np grid points [unit: a]	9
1.7	double*	ZZ	1-D array storing the values of co- ordinate z of the np grid points [unit: a]	9
1.8	$double^*$	nnn	Lapse function N at the np grid points $(1-D \ array)$	9
1.9	double*	beta_x	Component β^x of the shift vector of corotating coordinates [unit: c]	
1.10	double*	beta_y	10 Component β^{y} of the shift vector of corotating coordinates [unit: c]	
1.11	double*	beta_z	10 Component β^z of the shift vector of corotating coordinates [unit: c]	
1.12	double*	g_xx	$\begin{array}{c} 10\\ Metric \ coefficient \ \gamma_{xx} \ at \ the \ grid\\ points \ (1-D \ array) \ \dots \ 1 \end{array}$.0

This page was generated with the help of $\mathsf{DOC}{++}$

http://docpp.sourceforge.net

July 14, 2010

1

1.13	$double^*$	g_xy	Metric coefficient γ_{xy} at the grid points (1-D array)	11
1.14	$double^*$	g_xz	Metric coefficient γ_{xz} at the grid points (1-D array)	11
1.15	$double^*$	g_уу	Metric coefficient γ_{yy} at the grid points (1-D array)	11
1.16	$double^*$	$g_{-}yz$	Metric coefficient γ_{yz} at the grid points (1-D array)	11
1.17	$double^*$	g_zz	Metric coefficient γ_{zz} at the grid points (1-D array)	12
1.18	double*	k_xx	Component K_{xx} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]	12
1.19	double*	k_xy	Component K_{xy} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]	12
1.20	double*	k_xz	Component K_{xz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]	13
1.21	double*	$\mathbf{k}_{-}\mathbf{y}\mathbf{y}$	Component K_{yy} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]	13
1.22	double*	$k_{-}yz$	Component K_{yz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]	13
1.23	double*	k_zz	Component K_{zz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]	13
1.24	double*	$dpsi_x$	First derivative $\partial/\partial x$ of the con- formal factor Ψ [unit: a^{-1}]	14
1.25	$double^*$	${f dpsi_{-}y}$	First derivative $\partial/\partial y$ of the con- formal factor Ψ [unit: a^{-1}]	14
1.26	double*	$dpsi_z$	First derivative $\partial/\partial z$ of the con- formal factor Ψ [unit: a^{-1}]	14
1.27	$double^*$	$d2psi_xx$	Second derivative $\partial^2/\partial x^2$ of the conformal factor Ψ [unit: a^{-2}].	14
1.28	$double^*$	$d2psi_xy$	Second derivative $\partial^2/\partial x \partial y$ of the conformal factor Ψ [unit: a^{-2}].	15

This page was generated with the help of $\mathsf{DOC}{++}$

http://docpp.sourceforge.net

1.29	double*	$d2psi_xz$	Second derivative $\partial^2/\partial x \partial z$ of the conformal factor Ψ [unit: a^{-2}].	15
1.30	double*	${ m d2psi_yy}$	Second derivative $\partial^2/\partial y^2$ of the conformal factor Ψ [unit: a^{-2}].	15
1.31	$double^*$	$d2psi_yz$	Second derivative $\partial^2/\partial y \partial z$ of the conformal factor Ψ [unit: a^{-2}].	15
1.32	$double^*$	$d2psi_zz$	Second derivative $\partial^2/\partial z^2$ of the conformal factor Ψ [unit: a^{-2}].	16
1.33		Bin_BH (int nbpo const do const ch	ints, const double* xi, uble* yi, const double* zi, int fill, ar* filename, bool mdiff=false) Constructor from Lorene spectral data.	16
1.34		$\mathbf{Bin}_{-}\mathbf{BH} \ (\mathrm{FILE}^* \)$	Constructor from a binary file (previously created by save_bin)	17
1.35		Bin_BH (ifstream	&) Constructor from a formatted file (previously created by save_form)	17
1.36		$\mathbf{\tilde{Bin}}_{\mathbf{BH}}()$	Destructor	17
1.38	void	save_bin (FILE*)	const Save in a binary file	17
1.39	void	save_form (ofstream)	am&) const Save in a formatted file	18

Private Members

1.37	void	alloc_memory ()	Allocate the memory for the arrays	
			g_{-ij} , k_{-ij} , etc	18

Binary black hole configuration on a Cartesian grid.

A binary black hole system is constructed on a Cartesian grid from data stored in a file resulting from a computation by Grandclement, Gourgoulhon and Bonazzola, Phys. Rev. D 65, 044021 (2002).

All the quantities are in units derived from the length scale defined by the coordinate radius a of black hole 1 apparent horizon (throat).

Importation of Lorene data is performed by means of the constructor

http://docpp.sourceforge.net

This page was generated with the help of $\mathsf{DOC}{++}$

Bin_BH::Bin_BH(int, const double*, const double*, const double*, const char*). This constructor takes general arrays for the location of the Cartesian coordinates (x, y, z), i.e. it does not assume that the grid is a uniform one. Note also that these arrays are 1-D, as well as all the metric fields, in order to be use with any ordering of the 3-D storage.

This class is very simple, with all data members being public. A typical example of use is the following one

```
// Define the Cartesian grid by means of the arrays xg, yg, zg:
 *
       for (int i=0; i<nb_points; i++) {</pre>
 *
             xg[i] = ...
 *
             yg[i] = ...
 *
 *
             zg[i] = ...
       }
 *
 *
 *
       // Read the file containing the spectral data and evaluate
 *
       //\  all the fields on the Cartesian grid :
 *
 *
       Bin_BH binary_system(nb_points, xg, yg, zg, fill, datafile) ;
 *
 *
       // Extract what you need :
 *
 *
       double* gamma_xx = binary_system.g_xx ; // metric coefficient g_xx
 *
 *
       double* shift_x = binary_system.beta_x ; // x comp. of shift vector
 *
 *
       . . .
 *
 *
       // Save everything in an ASCII file :
 *
       ofstream file_ini("ini.d") ;
 *
       binary_system.save_form(file_ini) ;
 *
 *
       file_ini.close() ;
 *
 *
Version:
                    $Id: bin_bh.h,v 1.10 2010/07/14 16:47:30
                    e_gourgoulhon Exp $
```

____ 1.1 ____

double omega

1

This page was generated with the help of DOC++ http://docpp.sourceforge.net

Orbital angular velocity [unit: a^{-1}]

Orbital angular velocity [unit: a^{-1}]

1

double dist

Distance between the coordinate centers of two black holes [unit: a]

Distance between the coordinate centers of two black holes [unit: a]

double radius2

_ 1.3 ____

Coordinate radius of the apparent horizon (throat) of black hole 2 [unit: a].

Coordinate radius of the apparent horizon (throat) of black hole 2 [unit: a]. NB: The coordinate radius of black hole 1 is 1 by definition of the length unit.

int \mathbf{np}

_ 1.4 _

Total number of grid points

Total number of grid points

This page was generated with the help of DOC++ $\label{eq:help} \ensuremath{\mathsf{http://docpp.sourceforge.net}}$

--- 1.5 $---- double^* \mathbf{x} \mathbf{x}$

1-D array storing the values of coordinate x of the np grid points [unit: a]

1-D array storing the values of coordinate x of the np grid points [unit: a]

double* $\mathbf{y}\mathbf{y}$

_ 1.6 _

1-D array storing the values of coordinate y of the np grid points [unit: a]

1-D array storing the values of coordinate y of the np grid points [unit: a]

double* $\mathbf{z}\mathbf{z}$

_ 1.7 _

1-D array storing the values of coordinate z of the np grid points [unit: a]

1-D array storing the values of coordinate z of the np grid points [unit: a]

double* **nnn**

_ 1.8 _

Lapse function N at the np grid points $(1-D \ array)$

Lapse function N at the **np** grid points (1-D array)

This page was generated with the help of DOC++ $\label{eq:help} \ensuremath{\mathsf{http://docpp.sourceforge.net}}$

____ 1.9 _____ double* **beta_x**

Component β^x of the shift vector of corotating coordinates [unit: c]

Component β^x of the shift vector of corotating coordinates [unit: c]

double* $beta_y$

_ 1.10 ____

Component β^{y} of the shift vector of corotating coordinates [unit: c]

Component β^{y} of the shift vector of corotating coordinates [unit: c]

- 1.11 - double* **beta_z**

Component β^z of the shift vector of corotating coordinates [unit: c]

Component β^z of the shift vector of corotating coordinates [unit: c]

 $--- 1.12 ---- double* g_x$

Metric coefficient γ_{xx} at the grid points (1-D array)

Metric coefficient γ_{xx} at the grid points (1-D array)

This page was generated with the help of DOC++ $\label{eq:help} {\rm http://docpp.sourceforge.net}$

____ **1.13** _____ double* **g_xy**

Metric coefficient γ_{xy} at the grid points (1-D array)

Metric coefficient γ_{xy} at the grid points (1-D array)

double* $\mathbf{g}_{\mathbf{x}}$

_ 1.14 _

Metric coefficient γ_{xz} at the grid points (1-D array)

Metric coefficient γ_{xz} at the grid points (1-D array)

____ 1.15 _____ double* g_yy

Metric coefficient γ_{yy} at the grid points (1-D array)

Metric coefficient γ_{yy} at the grid points (1-D array)

____ 1.16 _____ double* g_yz

Metric coefficient γ_{yz} at the grid points (1-D array)

Metric coefficient γ_{yz} at the grid points (1-D array)

This page was generated with the help of DOC++ $\label{eq:help} \ensuremath{\mathsf{http://docpp.sourceforge.net}}$

____ 1.17 _____ double* g_zz

Metric coefficient γ_{zz} at the grid points (1-D array)

Metric coefficient γ_{zz} at the grid points (1-D array)

____ 1.19 _____

double* k_xx

_ 1.18 __

Component K_{xx} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

Component K_{xx} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

 $\mathrm{double}^* \; k_xy$

Component K_{xy} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

Component K_{xy} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

____ 1.20 _____

double* k_xz

Component K_{xz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

This page was generated with the help of DOC++ $\label{eq:help} http://docpp.sourceforge.net$

Component K_{xz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

_____1.21 ____

1

 $\mathrm{double}^* \ \mathbf{k}_{-} \mathbf{y} \mathbf{y}$

Component K_{yy} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

Component K_{yy} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

double* $\mathbf{k}_{\mathbf{yz}}$

_ 1.22 __

Component K_{yz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

Component K_{yz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

double* $\mathbf{k}_z \mathbf{z}$

_ 1.23 __

Component K_{zz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

Component K_{zz} of the extrinsic curvature at the grid points (1-D array) [unit: c/a]

This page was generated with the help of $\mathsf{DOC}{++}$

http://docpp.sourceforge.net

--- 1.24 ---- double* dpsi_x

First derivative $\partial/\partial x$ of the conformal factor Ψ [unit: a^{-1}]

First derivative $\partial/\partial x$ of the conformal factor Ψ [unit: a^{-1}]

 $\mathrm{double}^* \ \mathbf{dpsi_jy}$

_ 1.25 __

First derivative $\partial/\partial y$ of the conformal factor Ψ [unit: a^{-1}]

First derivative $\partial/\partial y$ of the conformal factor Ψ [unit: a^{-1}]

 $\operatorname{double}^* \operatorname{\mathbf{dpsi}}_{\mathbf{z}}$

_ 1.26 ____

First derivative $\partial/\partial z$ of the conformal factor Ψ [unit: a^{-1}]

First derivative $\partial/\partial z$ of the conformal factor Ψ [unit: a^{-1}]

 $\mathrm{double}^* \; \mathbf{d2psi_xx}$

_ 1.27 _

Second derivative $\partial^2/\partial x^2$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^2/\partial x^2$ of the conformal factor Ψ [unit: a^{-2}]

This page was generated with the help of DOC++ $\label{eq:help} {\rm http://docpp.sourceforge.net}$

____ 1.28 _____ double* d2psi_xy

Second derivative $\partial^2/\partial x \partial y$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^2/\partial x \partial y$ of the conformal factor Ψ [unit: a^{-2}]

double* $d2psi_xz$

_ 1.29 _____

Second derivative $\partial^2/\partial x \partial z$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^2/\partial x \partial z$ of the conformal factor Ψ [unit: a^{-2}]

___ **1.30** _____ double* **d2psi_yy**

Second derivative $\partial^2/\partial y^2$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^2/\partial y^2$ of the conformal factor Ψ [unit: a^{-2}]

double* $d2psi_yz$

_ 1.31 ____

Second derivative $\partial^2/\partial y \partial z$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^2/\partial y \partial z$ of the conformal factor Ψ [unit: a^{-2}]

This page was generated with the help of DOC++ $\label{eq:help} {\rm http://docpp.sourceforge.net}$

____ **1.32** _____ double* **d2psi_zz**

_ 1.33 _

Second derivative $\partial^2/\partial z^2$ of the conformal factor Ψ [unit: a^{-2}]

Second derivative $\partial^2/\partial z^2$ of the conformal factor Ψ [unit: a^{-2}]

Bin_BH (int nbpoints, const double* xi, const double* yi, const double* zi, int fill, const char* filename, bool mdiff=false)

Constructor from Lorene spectral data.

Constructor from Lorene spectral data.

This constructor takes general arrays xi, yi, zi for the location of the Cartesian coordinates (x, y, z), i.e. it does not assume that the grid is a uniform one. These arrays are 1-D to deal with any ordering of a 3-D storage.

Parameters: nbpoints xi ji zi fill fill = 0 : all the fields are set to zero fill = 1 : the fields are extrapolated from theirvalues "outside" the holes, by mea filename

This page was generated with the help of DOC++ http://docpp.sourceforge.net

____ 1.34 _____ Bin_BH (FILE*)

Constructor from a binary file (previously created by save_bin)

Constructor from a binary file (previously created by save_bin)

 $\mathbf{Bin}_{\mathbf{BH}}$ (ifstream &)

_ 1.35 ____

Constructor from a formatted file (previously created by save_form)

Constructor from a formatted file (previously created by **save_form**)

____ 1.36 _____ ~Bin_BH ()

Destructor

Destructor

_____1.38 .

void $save_bin$ (FILE*) const

Save in a binary file.

Save in a binary file. This file can be subsequently read by the evolution code, or by the constructor $\tt Bin_BH::Bin_BH(FILE*$).

This page was generated with the help of DOC++ $\label{eq:help} \ensuremath{\mathsf{http://docpp.sourceforge.net}}$

_ 1.39 _

1

void $\mathbf{save_form}$ (of stream&) const

Save in a formatted file.

Save in a formatted file. This file can be subsequently read by the evolution code, or by the constructor Bin_BH::Bin_BH(ifstream&).

1.37	
void alloc_memory ()	

Allocate the memory for the arrays g_ij , k_ij , etc

Allocate the memory for the arrays g_ij, k_ij, etc

This page was generated with the help of $\mathsf{DOC}{++}$ http://docpp.sourceforge.net

Class Graph

1	
Bin_BH	 4

This page was generated with the help of DOC++ $\label{eq:help} \ensuremath{\mathsf{http://docpp.sourceforge.net}}$