
C++ digest

c©Jérôme Novak

January 25, 2008

Contents

1 Introduction 2

2 Basic syntax 2
2.1 Types and variables . 2
2.2 Pointers and references . 3
2.3 Functions . 4
2.4 Tests, loops and operators . 5
2.5 Inputs / Outputs . 6
2.6 Memory allocation . 7
2.7 Static variables and namespaces . 8

3 Classes 8
3.1 Members . 9
3.2 Restriction of access and const issues . 9
3.3 Constructors, destructor and assignment operator 11
3.4 Derived classes . 12
3.5 Virtual methods . 13
3.6 Abstract classes . 13

4 Examples 14
4.1 A first program . 14
4.2 A class of rational numbers . 15

4.2.1 Declaration file rational.h . 15
4.2.2 Definition file rational.C . 16
4.2.3 GCD function . 18
4.2.4 Main program ratio.C . 18

4.3 Classes My array and Square matrix . 18
4.3.1 Declaration file my array.h . 18
4.3.2 Definition file my array.C . 20
4.3.3 Declaration file matrix.h . 21
4.3.4 Definition file matrix.C . 22

1

1 Introduction

This document is intended to give a few references on the way the C++ language works, for
the people attending the school on spectral methods in Meudon in November 2005 and having
no knowledge of this programming language. It is very brief (incomplete!) and deals only with
most basic syntax and notions (classes, derived classes, virtual methods), with a few examples
given in the last section. Interested persons can, of course, consult more complete manuals, like
The C++ Programming Language by the designer of C++ Bjarne Stroustrup, or refer to one of
the many available Web sites, like e.g http://www.cplusplus.com, which is quite useful when
dealing with inputs/outputs (iostream library).

One should not focus too much on the fact that C++ is called an “object-oriented language”.
It is a programming language with function calls and use of variables, which can be of different
types. The notion of class simply gives to the programmer the possibility of defining and intro-
ducing his own types; as well as the associated functions to act and interact with other existing
types.

As general remarks, it is necessary to declare all classes, functions and variables before they
are used or implemented. Except for variables, these declarations are usually put to header
(or declaration) files, which are then included into source files that uses or implements them.
This implementation is often called definition of the function or class (see also Sec. 4). Then, a
distinction is made between static and dynamic properties in the program: a static feature can
be determined or resolved when then program is compiled; whereas a dynamic one is completely
defined only when the program is executed (for example, it depends on some quantity given by
the user at run time).

Finally, all instruction lines must end with a semicolon “;” ...

2 Basic syntax

For those who already know about C programming language, it is in principle possible to use
any C instruction in C++ too. Although this might be very helpful for people having good
skills for inputs / outputs in C, it is however recommended to switch to C++ syntax, as far as
memory allocation is concerned, and to forget about malloc or free...

2.1 Types and variables

A variable is the basic brick of the program: it contains information to be processed like e.g.
numbers. Indeed, some of the simplest types of variable, that are pre-defined in C++ are int,
float, double, char, bool, ...:

• int n ; n = 5 ; integer number;

• float x=1.5e10F ; real floating-point number in single precision; stored on 4 bytes, it
describes 8 digits (here x = 1.5× 1010);

• double y ; y=2.3e-9 ; real floating-point number in double precision; stored on 8 bytes,
it describes 16 digits (here y = 2.3× 10−9);

• char l=’w’; a single character (’\n’is a newline, ’\t’a tabulation, ...);

• bool f=true; boolean variable that can only be true or false.

2

http://www.cplusplus.com

The word “const” in front of a type name means that the variable is constant and thus its value
cannot be modified by the program. Constant variables are initialised when they are declared:

const int n = 8 ; // now, writing ’n=2;’ is forbidden!

Variables can be declared at any point in the code, provided that, of course, they are declared
before they are used. The declaration is valid only within the local block, i.e. within the region
limited by braces (“{ }”). In the example of Sec. 4.1, the variable square is defined only
until the first “}”, two lines after. It is the local declaration scope of variables in C++.

2.2 Pointers and references

A pointer on a variable is the address where this variable is stored in the system memory.
Pointers can then also be used as variables in the program.

int n ;
n = 2 ;
int *p ;
p = &n ;
int x = *p ;

In this example, p is declared on third line as a variable of type “pointer on an integer” (the
type is int *); the line after, it is initialised to be the address of the variable n (the ampersand
meaning “the address of”). Finally, if one wants to use the value stored at the address defined
by p, a star (*) must be put in front of the pointer: on the last line, x is initialised to 2. One
can therefore see two ways of manipulating variables: through their values (like n or x in this
example), or through their addresses (like p).

In C++, there is a third way to do so: the references. A reference to a variable can be seen
as an equivalent to this variable: if one of the couple (variable / reference) is modified, the other
is changed too.

int n ;
n = 3 ;
int &r = n ;
r++ ; //equivalent to r = r + 1 ;
int x = r - n ;

Here, r is declared as a reference to an integer (type int &) and must be immediately initialised,
like const variables. In the fourth line, r is incremented, and so is n, since they are equivalent:
every modification to r also affects n! The results is that, on the last line, x is initialised to
4-4=0.

Constant pointers have a rather different meaning from constant values. const double *x;
means that the variable pointed by x is constant, not x! This means that one can write:

int n=3;
int p=4;
const int *pn = &n ;
pn = &p ; // OK
*pn = 9 ; //forbidden!

One can change the address pn (in this case, from the address of n to the address of p), but one
can access the variable pointed by this address in readonly mode. In order to have a constant
address, the following syntax must be used:

3

int *const pp = &p ;

in that case, an instruction of the type pp = &n; is forbidden. Thus, writing const int *const
pq = &n ; means that both the address pq and the variable stored at this address are constant.
As for references, only the syntax const double &x; has a meaning: x can be accessed in
readonly mode.

2.3 Functions

In C++, a function is a name and a list of arguments; eventually it returns something. All
parts of the code (main program, subprograms) are functions and, apart from the main one,
they must all be declared before there is a call to them. This declaration is only the statement
of (from left to right): the return type (if the functions returns nothing, then it is void), the
name of the function and, in between parenthesis, a list of the types of its arguments. If there
is no argument, then empty parenthesis () should be used. An example can be seen in Sec. 4.1,
with the function my function, returning a double and having as arguments a double and an
int. It is declared before the call in the function main (the main program, which always returns
an int, and which is compulsory to have a code running); it is then defined after this main
program. Note that the function main does not need to be declared.

Some arguments can be set to default values in the declaration of a function. Consider, for
example the declaration of a function that displays an integer in a given base:

void display_integer(int num, int base=10) ;

so that it is called display integer(128, 16), to display 128 in hexadecimal base. But with
the declaration done above, one can call it also display integer(20) to display 20 in decimal
base. The second argument has a default value, that need not be specified at the function call.
Such arguments (there can be several of them) must always be located at the end of the argument
list and, if an argument with a default value has its value specified, all those which are before
him must also have their values specified. Please note that default values appear only in the
declaration and never in the definition of a function.

As stated at the beginning of this section, a function is specified not only by its name, but
also by the list of the types of its arguments. Therefore, it is possible to overload a function
with another having the same name, but different arguments:

int sum(int a, int b) ;
double sum(double x, double y) ;

When the function sum is called, the choice is made (when compiling) looking at the arguments’
types. Note that the return type is not discriminatory and a function double sum(int, int)
cannot be declared together with the first one of the here-above example.

To end with functions, a few details about arguments and return values are given. A variable
given as an argument to a function is not “passed” in the strict sense: the function makes a copy
of the variable and works on that copy. This means that a function cannot modify a variable,
passed as argument! This can be seen on the following example:

void swap(int a, int b) { int c=a;
a=b; b=c ; }
int main() {
int n = 2 ; int p = 3 ;
swap(n,p) ; }

4

After the call to swap, n=2 and p=3 still! The way of doing here is to pass the variables by
their addresses or references on them.

void swap(int *a, int *b) { int c= *a;
*a=*b; *b=c; }
int main() {
int n = 2 ; int p = 3 ;
swap(&n,&p) ; }

or

void swap(int &a, int &b) { int c=a;
a=b; b=c ; }
int main() {
int n = 2 ; int p = 3 ;
swap(n,p) ; }

... and everything works fine, since a copy of the address (or reference) still points on (refers to)
the same variable. Therefore, if a variable is an output argument of a function, it should not be
passed by its value.

2.4 Tests, loops and operators

A simple test is written as follows:

if (a > 5) {
b = 5 ; //etc ...
}
else { // if needed
b = 3 ;
}

The expression following the word if must be surrounded by parenthesis and of boolean type:
(n == 2) equality test, which is different from assignment and has two =’s, (p != 0) different
from, (x >= 2.e3), ... or a combination of such, using &&(logical “and”) or ||(logical “or”).
If the condition is true, then the block following it is executed. Eventually, one can put an
instruction (followed by a block) else{...}. Several other tests are available:

• do {...} while (some test)

• while (some test) {...}

• some test ? action1 : action2 ;

In this last case (conditional operator), if “some test” is true then “action1” is executed, oth-
erwise, it is “action2”.

The operator switch is used to choose between different instructions depending on the value
of an integer-like variable:

switch (n) {
case 0 :
p = 2 ;
break ;
case 1 :
p = 3 ;
break ;
default:
p = 0 ;
l = 3 ;
break ;
}

5

Finally, a test that is often useful is given by the assert command:

#include<assert.h>
void my_log(double a) {
assert(a > 0.) ;
... }

After the inclusion of its declaration in the file assert.h, the use is assert(boolean expression
). If the boolean expression is true, then the code continues to the next line; otherwise the code
is stopped by an abort() command. The advantage is that, when compiling the code with the
-DNDEBUG option, the assert tests are not performed and thus, for an optimised version, it is
costless.

The syntax for a loop is quite simple and needs three instructions :

1. the initialisation of the loop variable

2. the test (done before loop instructions)

3. the increment of the loop variable (each time the loop is ended)

for (int i=0; i<20; i++) {
... //loop instructions
}

Here, i runs from 0 to 19; note that it is a variable local to the loop i.e. it is no longer valid
after the loop.

It is also worth mentioning some of the arithmetic operators, the last ones in this table can
shorten some expressions:

operator +, -, *, / % += (a += 5;) -=, *=, /=, %= ++ (a++;)
meaning usual arithmetic module1 a = a + 5; similar to += a = a + 1;

2.5 Inputs / Outputs

This section deals with formatted input/output manipulations. These are done through input-
or output-streams and the iostream library. The “standard output” (the shell console on which
one is typing commands) is called cout, and one can send it data thanks to the injection operator
“<<”:

int a = 9 ;
cout << a ;

will display ’9’. Strings can be displayed directly: cout<<"Hello world!"<<endl; where endl
stands for a new line (and empties the buffer). More about strings is given in Sec. 2.6. All stan-
dard types (see Sec. 2.1) can be outputted in this way, without specification of the format to be
used. In order to change the format (precision, fixed / scientific, etc ...), manipulators are em-
ployed (see http://www.fredosaurus.com/notes-cpp/io/omanipulators.html). Standard
input (from the keyboard, in the console) is accessed through cin:

1module being the operation that gives the remainder of a division of two integer values

6

http://www.fredosaurus.com/notes-cpp/io/omanipulators.html

cout << "Enter a number:" << endl ;
int n ;
cin >> n ;

Any function using cin, cout or >>-like operators must have declared the iostream library and
must use the standard namespace (see Sec. 2.7) by adding the following two lines before its
definition:

#include<iostream>
using namespace std ;

Accessing to files is done in a very similar way:

double x = 1.72e3 ;
ofstream my_file("output.dat") ;
my_file << "The value of x is: " << x << endl ;

this opens a file called “output.dat” (created, if it does not exist, erased if it does) and writes
things into it. my file is an object of type ofstream (output file stream), linked with the file
opened in write-mode. Similarly, to read data from a formatted (existing) file, one should do as
for reading from the standard input:

ifstream a_file("input.dat") ;
int a ;
a_file >> a ;

In this case, a file is of type ifstream (input file stream). Before using any of these types, one
should declare, in addition to the iostream library and the standard namespace, the fstream one
with a “#include<fstream>”.

2.6 Memory allocation

There are two ways of defining an array in C++: static and dynamic allocation. The static way
is e.g. double tab[37] ; (note that the indices of tab range from 0 to 36), or with constant
integer variable for the dimension const int nsize = 100; int tbl[nsize];. Here the size
of each array is known at compilation time. On the contrary, when this size cannot be known,
one must use dynamic memory allocation:

int n ;
cout << "Enter size" << endl ;
cin >> n ;
double *tab = new double[n] ;

In this case, tab is an array, which elements can be accessed as before: from tab[0] to tab[n-1].
The syntax used here shows that an array can be seen as a pointer on its first element, so there is
an implicit compatibility between arrays and pointers. The allocation of the memory is done at
runtime thanks to the instruction new, but this memory must then be given back to the system,
using the instruction delete, when the array is no longer used: delete [] tab;

The simplest implementation of strings is done through arrays of chars, with the use of
double quotes, contrary to single chars:

char* var = "Hello!";

another example is given is Sec. 4.1. Note that such strings end with the character ’\0’, so here
var has seven elements.

A full program implementing many features described here is shown is Sec. 4.1.

7

2.7 Static variables and namespaces

A static variable keeps its value from one function call to the next:

void f() {
static int n_call = 0 ;
if (n_call == 0) { ... } //first call operations
n_call++ ; ...

In this example, n call is initialised to 0 when the function is called for the first time, but it
then keeps its value (it is no longer initialised!) at next function calls. So, in this case, the value
of n call is the actual number of calls to f().

However, this kind of syntax can be replaced in C++ with the use of a namespace. This is a
declaration region that can be used in several functions, without interfering with local variables:

namespace my_name {
int i, a ;
void g() ;
}

Here is declared a namespace called my name with i, a and the function g as members. After
including the file containing this namespace, one can use some of its variables my name::i =
0;, or the whole namespace:

using namespace my_name ;
g() ;

In such case there is no need to specify my name::, the call to g() means my name::g(). In
Lorene, namespaces are used to carry unit definitions (numerical constants). Finally, in order
to replace static variables, one should use an anonymous namespace:

namespace {
int n_call = 0 ;
}
void f() {
if (n_call ... }

in particular, there is no instruction using.

3 Classes

A class is a collection of data and functions. It generalises the notion of type by giving the
possibility to the programmer to define new types of his own. In particular, one can overload
(see Sec. 2.3) standard operators (e.g. arithmetic operators, or output) with these new types,
as it is shown in complete examples of Sec. 4.2 and 4.3. Once a class is declared and defined,
one can declare variables of that new type, use pointers on it or references to it, as if it were a
standard type (double, int, ...). Classes has already been used in this document: output files
were declared as ofstream in Sec. 2.5, which is a C++ class...

8

3.1 Members

To declare a class, one must specify its members: data (variables of other types, including
eventually other classes) and functions, sometimes called methods. The syntax is:

class My_class {
int n ;
double x ;
double f(int) ;
} ;

This declares a class called My class, with two data members, called x and n, and one method
f(int). Actually, the full name of the method is (to be used when defining it outside the class
declaration):

double My_class::f(int p) {
x = 2.3*(p+n) ;
double res = 3./x ;
...}

Methods of a class can use the data without need to re-declare them: here n or x are known to
be members of My class.

In a function using this class, these members are used the following way (one must include
the declaration of the class before using it)1:

My_class w ;
int q = w.n + 2 ;
cout << w.f(q) ;

The variable w is an object of type My class, and has its own members that can be accessed
through the operator “.”. When considering pointers, the operator is “->”:

My_class *v ;
double y = v->x + 0.2 ;
cout << v->f(3) ;

Usual arithmetic operators can be overloaded to work with this new class:
e.g. My_class operator+(My_class, My_class); for the declaration, and, in some other func-
tion:

My_class z1 ;
My_class z2 ;
My_class t = z1 + z2 ;

3.2 Restriction of access and const issues

A central notion when manipulating classes is that some of its members are not accessible (i.e.
usable) by “normal” functions, (functions which are not member of the same class. This is called
restriction of access and is achieved through the keywords public, private and protected:

1the first line assumes that there is a constructor (see Sec. 3.3) without parameters

9

class My_class {
private:
int n ;
double x ;
public:
double f(int) ;
private:
void g() ;
} ;

In this case, data and the method My class::g() are private, meaning that only functions
member of My class can use them, therefore the last two lines of

My_class v ;
cout << v.n ;
v.g() ;

are forbidden in all other functions. On the contrary, a call to v.f(2) is allowed. By default, all
members of a class are private, so it is highly recommended to use the keywords when declaring
a class. Such a keyword is valid until the use of another one; and protected has the same effect
as private in a class, the difference appearing only for derived classes (Sec. 3.4).

Exceptions can be made declaring some functions or other classes to be friend, within the
declaration of the class:

class My_class {
private:
int n ; ...
friend double ext_f() ;
} ;

Then, inside the definition of the non-class member double ext f(), one can access private
and protected members of My class. A class can be declared friend the same way: adding
friend class Other_class ; in the declaration of My class and, inside all methods of Other class,
it is then possible to access to private/protected members of My class.

The notion of constant object (see Sec. 2.1) means for a class that all data of this object
are constant. Exceptions are possible with the keyword mutable: a mutable data member is a
member that can be modified, although the object it belongs to is seen as constant. The idea
can be that mutable members are somehow “secondary” members, that can be deduced from
other “primary” data. So, as long as these primary data are not modified, the object is supposed
constant. The syntax is, within a class declaration:

class My_class {
public:
int n; ...
mutable double sec ;
} ;

So, in a function using My class, one has then:

const My_class w = ... ;
w.n = 2 ; // forbidden!
w.sec = 0.7 ; // OK

10

A member function that keeps the object it is called on constant is said constant too, the
keyword const can be added at the end of its declaration and definition:

class My_class {
...
double f(int) const ;
void g() ;
... };

Here, double My class::f(int) is constant, whereas void My class::g() is not. As before,
in a function using this class:

const My_class w = ... ;
cout << w.f(2) ; //OK
w.g() ; //forbidden!

3.3 Constructors, destructor and assignment operator

When designing a new class, special care must be devoted to four particular member functions:

• a standard constructor – this function is called to create an object of this class. It has
the same name as the class, and no return type (e.g. My class::My class(). It can take
arguments or not and its task can be (not compulsory at all) to initialise data members
or to allocate memory.

• a copy constructor – creates an object from an existing one. It is also a constructor as
the standard one but it must take exactly one argument of the type const My class &,
meaning that it needs a reference on an object of that class that will not be modified to
build the new object (readonly!).

• a destructor – destroys the object when it is no longer valid, i.e. at the end of its declaration
scope. Its task is mainly to check if there is some dynamically allocated memory to be
given back to the system. It has the same name as the class, but with a tilde (˜) in front;
it takes no argument and has no return type.

• an assignment operator – used to assign an existing object to another one, with an instruc-
tion like a=b. Its name is My class::operator= and, as the copy constructor, it takes one
argument of the type const My class &.

These four methods are compulsory to have a usable class. Note that there can be several
constructors as long as there is a copy constructor and a standard one. A “fifth” function
is very useful: an overload of the << operator to display objects of the class. This function
is necessarily an external one (i.e. it is not a member of the class) and can also be used to
output to files instead of cout. A full example implementing all these functions, together with a
main function is shown in Sec. 4.2, with the class rational, representing rational numbers. In
particular, in the definition of this class (Sec. 4.2.2), both constructors use the initialisation list
that directly initialises class data from the constructor’s arguments

rational::rational(int a, int b) : num(a), denom(b) { ...}

Here, data num and denom are directly copied from the variables a and b; i.e. it is equivalent to
writing

11

rational::rational(int a, int b) {
num = a ;
denom = b ; ... }

Still, the initialisation list is more readable and will be used for derived classes (see next section).
Another example is given by the class My array in Sec. 4.3, with dynamic memory allocation

(i.e. a non-trivial destructor). Only the main structure is given, but the class can be compiled.

3.4 Derived classes

An existing class can be completed into a new class, which then has more members. This is the
inheritance mechanism that allows the (new) derived class to get the properties of the (existing)
base class, and to add new ones. The declaration of the new class is done as follows (once the
class My class has been declared):

class New_class : public My_class {
int p ;
int h() ; }

In this example, the class New class is derived from My class, to which it adds two new mem-
bers.

Actually, the derived class does not inherit all members of the base class. First, the private
members are not accessible to the derived class methods (whereas protected ones are! This is
the difference between private and protected access); then, none of the assignment operators
(which name are operator=), constructors or destructor are inherited. Therefore, one must
re-declare and re-define these members, but with the help of their equivalents in the base class.
In particular, for the constructors of the derived class, one must first call the constructor for
the base class, through the initialisation list. Then, the new members of the derived class are
initialised in this list and, finally, other actions are performed in the body of the constructor.
The destructor for the new class works in the opposite way: first the new members must have
their memory given back to the system (if any) and, at the end, there is automatically a call
to the destructor of the base class. A simple example is given in Sec. 4.3.4, with the new class
Square matrix being a derived class from My array, but with no new data member.

A very important point is that there is an implicit compatibility between the derived class
and the base class. This is valid only for pointers and references to the derived class, which can
be used instead of pointers or references to the base class.

My_class *w ;
New_class *q ;
w = q ;

is allowed, whereas q = w; is forbidden. After the third line above, the static type of w is
My class * (obtained from the declaration), whereas the dynamic type is New class *, since
it is pointing on an object of this derived class. This dynamic type cannot, in general, be
determined at compilation time (imagine there is a test depending on some reading from cin,
to decide whether w = q is invoked or not). If one wants to know, in this example, the type of
w, a possibility is to use the instruction dynamic cast:

New_class *z = dynamic_cast<New_class *>(w) ;

12

In that case, if the dynamic type of w is New class *, then z != 0x0 (z is not the null pointer).
Actually, this is the case if w is compatible with the type; i.e. z is not null also if w is a pointer
on a derived class of New class.

The equivalent for references can be seen in the assignment operator of Square matrix
(Sec. 4.3.4), where there is a call to the assignment operator of the base class My array, but
with a reference to an object of the derived class as argument, instead of a reference to an object
of the base class (see the declaration of My array::operator=).

3.5 Virtual methods

In the examples cited above, a problem can arise if the derived class re-declares a method of the
base class:

class My_class {
double f(int) ; ...} ;
class New_class : public My_class {
double f(int) ; //different from that of My_class
...} ;
My_class *w ;
New_class *q ;
int v ; cin >> v ;
if (v==0) {
w = q ; }
cout << w->f(2) ;

Which method f(int) is called ? This is impossible to determine at compilation time, but is not
an academical problem since, in each derived class, this is exactly the case for destructors. In
the above example, it might happen that not all the memory allocated to w is freed. Therefore,
there is a mechanism in C++ called polymorphism that makes the link with the right function
at execution time (dynamically). It is obtained by the use of the keyword virtual, for the
declaration, in front of such “ambiguous” methods:

class My_class {
virtual double f(int) ; ...} ;
class New_class : public My_class {
virtual double f(int) ;
...} ;

Now, everything works fine and the call is done to the right function. The only requirement is
that the list of arguments must be the same for all the virtual functions having the same name.
Note that, every time inheritance is used, one must declare all destructors of base / derived
classes as virtual. Another example is given in Sec. 4.3.3 with the method display(ostream&):
the standard display is achieved through the call to operator<< which, thanks to implicit
compatibility, can also be called with (reference to) Square matrix objects. This function then
calls to the virtual method display(ostream&), which gives different output, depending on the
type of tab in.

3.6 Abstract classes

With the possibility of deriving classes, it is sometimes interesting to have some classes that are
not actually usable, but that can be used as templates for the design of other classes. These

13

classes therefore possess one or several methods that are too general to be defined (implemented):
in Lorene, this is the case e.g. for a general equation of state. Such kind of functions are then
declared as pure virtual method. The declaration is then ended with a “=0 ;” and no definition
is given:

class Eos {
virtual double p_from_rho(double) = 0 ; ... };

Still, a derived class, which is usually more specific, can implement that method, using poly-
morphism:

class Eos_polytrope: public Eos {
virtual double p_from_rho(double) ; ... };

In the example of Eos, one cannot declare an object of this type, since the class is incomplete,
only a derived class which implements the pure virtual methods can be used. Nevertheless, one
can declare a pointer or a reference to an Eos:

Eos eo ; //forbidden
Eos_polytrope ep ; //allowed, it implements p_from_rho
Eos *p_eos = &ep ; // OK, not instance + implicit compatibility
Eos &r_eos = ep ; // OK, not instance + implicit compatibility

Eos is called an abstract class, for one cannot declare any instance (no direct objects, only
pointers or references to) of this class. More generally, since an abstract class is a class which
cannot be instantiated, these are classes that:

• have a pure virtual method;

• derive from a class with a pure virtual method that they do not define;

• have only private or protected constructors.

4 Examples

4.1 A first program

This program does not do any interesting job, it is just an illustration of the basic syntax in
C++.

// C++ headers
#include <iostream> //<> are for system headers, "" for user-defined ones
#include <fstream>
// C headers
#include <math.h> // in principle, C headers contain a .h, whereas C++ do not
using namespace std ; // to get input / output objects (cin, cout, ...)
double my_function(double , int) ; // local prototype (declaration only)

int main(){ // In every executable there must be a main function returning an integer
const int nmax = 200 ;
double stat_array[nmax] ; //static allocation of memory
char dim[] = "size" ;

14

cout << "Please enter a "<< dim << " for an array between 1 and 200" << endl ;
int dyn_size ;
cin>>dyn_size ;
if ((dyn_size<1)||(dyn_size>200)) {
cout << "the " << dim <<" must be between 1 and 200!" << endl ;
cout << "try again: " ;
while ((dyn_size<1)||(dyn_size>200)) cin>>dyn_size ;

}
double *dyn_array = new double[dyn_size] ; //dynamic memory allocation
for (int i=0; i<nmax; i++) {
int square = i*i ;
stat_array[i] = square ;

}
double cube ;
for (int i=0; i<dyn_size; i++) {
cube = pow(double(i),3) ; //Conversion of an integer to a double
dyn_array[i] = cube + my_function(stat_array[i], dyn_size) ;

}
cout << "The value of the variable dyn_array is: " << dyn_array << endl ;
cout << "its first element is: "<< *dyn_array

<< " or, alternatively: " << dyn_array[0] << endl ;
cout << "Saving dyn_array to the file exa1.dat..." << endl ;
ofstream output_file("exa1.dat") ;
for (int i=0; i<dyn_size; i++) {

output_file << i << ’\t’ << dyn_array[i] << ’\n’ ; }
output_file << endl ;
delete[] dyn_array ; // It is necessary to release the allocated memory...
return EXIT_SUCCESS ; // If the program came up to here, everything went fine

}
// definition of "my_fonction"
double my_function(double x, int n) {
double resu = log(x+double(n)) ;
return resu ;

}

4.2 A class of rational numbers

To compile it, just type (e.g. with the GNU C++ compiler):
g++ -o ratio ratio.C rational.C gcd.C

4.2.1 Declaration file rational.h

#ifndef __RATIONAL_H_ // to avoid multiple declarations
#define __RATIONAL_H_
#include <iostream> // ostream class is used
using namespace std ;
class rational { // beginning of the declaration of class rational

// Data:
// -----

15

private:
int num ; // numerator
int denom ; // denominator

//Required member functions
//-------------------------

public:
rational(int a, int b = 1) ; // Standard constructor to create a/b
rational(const rational&) ; // Copy constructor

~rational() ; // Destructor

void operator=(const rational&) ; //Assignment from another rational

// Data access
// -----------
int get_num() const {return num ; }; //inline definition
int get_denom() const {return denom ; } ; //inline definition

//Display: declaration of "friendness" only
friend ostream& operator<<(ostream& , const rational&) ;

}; // end of the declaration of class rational

//True declaration of the function, not member of the class
ostream& operator<<(ostream& , const rational&) ;
// External arithmetic operators to calculate expressions such as ’p + q*r’
rational operator+(const rational&, const rational&) ; // rational + rational
rational operator-(const rational&, const rational&) ; // rational - rational
rational operator*(const rational&, const rational&) ; // rational * rational
rational operator/(const rational&, const rational&) ; // rational / rational
#endif

4.2.2 Definition file rational.C

// Include files
#include <assert.h>
#include "rational.h"

int gcd(int, int) ; //local prototype of an external function (greatest common divisor)

//--------------//
// Constructors //
//--------------//
// Standard
rational::rational(int a, int b):num(a), denom(b) {
assert(b!=0) ;

if (num == 0) denom = 1 ;

16

else {
int c = gcd(a, b) ;
num /= c ;
denom /= c ;

}
}

// Copy
rational::rational(const rational & rat_in): num(rat_in.num), denom(rat_in.denom)
{
assert(rat_in.denom != 0) ;
assert(gcd(num, denom) == 1) ;

}
//------------//
// Destructor //
//------------//
rational::~rational() { }

//------------//
// Assignment //
//------------//
// From rational
void rational::operator=(const rational & rat_in) {
assert(rat_in.denom != 0) ;
num = rat_in.num ;
denom = rat_in.denom ;
assert(gcd(num, denom) == 1) ;

}

//---------//
// Display //
//---------//
// Operator <<
ostream& operator<<(ostream& o, const rational & rat_in) {

if (rat_in.denom == 1) o << rat_in.num ; //as a friend it can access private data
else
o << rat_in.num << "/" << rat_in.denom ;

return o ;
}

//-----------//
// Addition //
//-----------//

// rational + rational, not friend, must use access functions
rational operator+(const rational& t1, const rational& t2) {

17

rational resu(t1.get_num()*t2.get_denom() + t2.get_num()*t1.get_denom(),
t1.get_denom()*t2.get_denom()) ;
return resu ;

}

4.2.3 GCD function

int gcd(int a, int b) {
if (a<b) {
int c = a ;
a = b ;
b = c ;

}
int reste = a%b ;
while (reste != 0) {
a = b ;
b = reste ;
reste = a%b ;

}
return b ;

}

4.2.4 Main program ratio.C

//Declarations of the class rational
#include "rational.h"

int main(){
rational p(420,315) ; // 420/315, simplified by the constructor
rational q(5) ; // 5/1
cout<< p + q<< endl ; // call to operator+ and operator<<

return EXIT_SUCCESS ;
}

4.3 Classes My array and Square matrix

Although the classes My array and Square matrix can be compiled, they have incomplete fea-
tures to be used on some real example. Only declaration and definition are given for better
clarity.

4.3.1 Declaration file my array.h

#ifndef __MY_ARRAY_H_
#define __MY_ARRAY_H_

#include<iostream>
#include<assert.h>

18

using namespace std ;

class My_array {
// Data :
// ------

protected:
int size1 ; //size in first dimension ...
int size2 ;
int size3 ;
double* tableau ; // the actual array

// Constructors - Destructor
// ---------------------------

public:
explicit My_array(int dim1, int dim2=1, int dim3=1) ; //standard constructor
My_array(const My_array&) ; //copy constructor

virtual ~My_array() ; //destructor

// Assignments
// -----------

void operator=(const My_array&) ; //assignment from another My_array

// Data access (inline)
// --------------------

int get_size1() const {return size1 ; };
int get_size2() const {return size2 ; };
int get_size3() const {return size3 ; };

double operator()(int i, int j=0, int k=0) const { //read-only access (const)
assert ((i>=0) && (i<size1)) ; // tests: are we beyond array bounds?
assert ((j>=0) && (j<size2)) ;
assert ((k>=0) && (k<size3)) ;

return tableau[(i*size2 + j)*size3 + k] ;
};

double& set(int i, int j=0, int k=0) { //read-write access (thanks to the reference!)
assert ((i>=0) && (i<size1)) ;
assert ((j>=0) && (j<size2)) ;
assert ((k>=0) && (k<size3)) ;
return tableau[(i*size2 + j)*size3 + k] ;

};

protected:
virtual void display(ostream&) const ; //to use polymorphism

// External function to be called for the display
friend ostream& operator<<(ostream&, const My_array&) ;

19

};

ostream& operator<<(ostream&, const My_array&) ;
#endif

4.3.2 Definition file my array.C

#include<fstream> // to manipulate file streams ...
#include<iomanip> // ... and output format.
#include "my_array.h"

My_array::My_array(int dim1, int dim2, int dim3) : size1(dim1), size2(dim2), size3(dim3),
tableau(0x0) {
assert((dim1>0)&&(dim2>0)&&(dim3>0)) ;
tableau = new double[dim1*dim2*dim3] ;

}

My_array::My_array(const My_array& tab_in) : size1(tab_in.size1), size2(tab_in.size2),
size3(tab_in.size3), tableau(0x0) {

assert((size1>0)&&(size2>0)&&(size3>0)) ;
int t_tot = size1*size2*size3 ;
tableau = new double[t_tot] ;
assert(tab_in.tableau != 0x0) ;
for (int i=0; i<t_tot; i++)
tableau[i] = tab_in.tableau[i] ;

}

My_array::~My_array() {
if (tableau != 0x0) delete [] tableau ;

}

void My_array::operator=(const My_array& tab_in) {
assert(size1 == tab_in.size1) ;
assert(size2 == tab_in.size2) ;
assert(size3 == tab_in.size3) ;
assert(tab_in.tableau != 0x0) ;
assert(tableau != 0x0) ;

int t_tot = size1*size2*size3 ;
for (int i=0; i<t_tot; i++)
tableau[i] = tab_in.tableau[i] ;

}

void My_array::display(ostream& ost) const {
assert(tableau != 0x0) ;

ost << "My_array: \n";

20

ost << size1 << "x" << size2 << "x" << size3 << " elements" << endl ;
ost << setprecision(5) ;

for (int i=0; i<size1; i++) {
ost << "i=" << i << ’\n’ ;
for (int j=0; j<size2; j++) {

for (int k=0; k<size3; k++) {
ost << tableau[(i*size2+j)*size3 + k] << ’\t’ ;

}
ost << endl ;

}
ost << endl ;

}
ost << endl ;
return ;

}

ostream& operator<<(ostream& ost, const My_array& tab_in) {
assert(tab_in.tableau != 0x0) ;
tab_in.display(ost) ;
return ost ;

}

4.3.3 Declaration file matrix.h

#ifndef __SQUARE_MATRIX_H_
#define __SQUARE_MATRIX_H_
#include "my_array.h"

class Square_matrix: public My_array { //inherits from My_array

// Constructors - Destructor
// ---------------------------

public:
explicit Square_matrix(int) ; //standard constructor
Square_matrix (const Square_matrix&) ; //copy constructor

virtual ~Square_matrix() ; //destructor (virtual, as needed)

// Assignment
// -----------
void operator=(const Square_matrix&) ; //assignment from another Square_matrix

protected:
virtual void affiche(ostream&) const ; //Display (virtual)

};

21

#endif

4.3.4 Definition file matrix.C

#include<iomanip> //to have the manipulator setprecision()
#include "matrix.h"

// Default constructor
//--------------------
Square_matrix::Square_matrix(int dim1) : My_array(dim1, dim1) {
assert(dim1>0) ;

}

// Copy constructor
//-----------------
Square_matrix::Square_matrix(const Square_matrix& tab_in) : My_array(tab_in) {}

// Destructor (does nothing, since there is an implicit call to ~My_array())
//-----------
Square_matrix::~Square_matrix() {}

// Assignment operator
//--------------------
void Square_matrix::operator=(const Square_matrix& tab_in) {
My_array::operator=(tab_in) ;

}

// Display
//--------
void Square_matrix::affiche(ostream& ost) const {
assert(tableau != 0x0) ;

ost << "Square_matrix " << size1 << "x" << size2 << endl ;
ost << setprecision(5) ;
for (int i=0; i<size1; i++) {
for (int j=0; j<size2; j++) {
ost << tableau[i*size2 + j] << ’\t’ ;

}
ost << endl ;

}
ost << endl ;

}

22

Index

abstract class, 14
anonymous namespace, 8
arithmetic operators, 6
array, 7
assert, 6
assignment operator, 11

base class, 12
block, 3

cin, 6
class, 8
constant, 3, 10
copy, 4
copy constructor, 11
cout, 6

declaration, 2
declaration scope, 3
default value, 4
definition, 2
delete, 7
derived class, 12
destructor, 11
dynamic, 2
dynamic memory allocation, 7
dynamic cast, 12

friend, 10
function, 2, 4

header, 2

ifstream, 7
implicit compatibility, 12
inheritance, 12
initialisation list, 11
input, 6
instance, 14
iostream, 6

loop, 6

manipulators, 6
members, 9
methods, 9
mutable, 10

namespace, 8
new, 7

ofstream, 7
output, 6
overload, 4

pointer, 3
polymorphism, 13
pure virtual method, 14

references, 3
restriction of access, 9

source, 2
standard constructor, 11
static, 2
static variable, 8
strings, 7
switch, 5

test, 5
types, 2

values, 3
variable, 2
virtual, 13

23

	Introduction
	Basic syntax
	Types and variables
	Pointers and references
	Functions
	Tests, loops and operators
	Inputs / Outputs
	Memory allocation
	Static variables and namespaces

	Classes
	Members
	Restriction of access and const issues
	Constructors, destructor and assignment operator
	Derived classes
	Virtual methods
	Abstract classes

	Examples
	A first program
	A class of rational numbers
	Declaration file rational.h
	Definition file rational.C
	GCD function
	Main program ratio.C

	Classes My_array and Square_matrix
	Declaration file my_array.h
	Definition file my_array.C
	Declaration file matrix.h
	Definition file matrix.C

